Below you will find our collection of revision notes and video tutorials. For the best revision experience, use both the notes and the videos at the same time to help you follow along. All resources are updated for the latest AQA Physics specification.

## Revision Notes and Video Tutorials

Revision notes created by Revisely and Milo Noblet (milo.me.uk)

## 1. Measurements and their Errors

### Revision Notes

- We do not yet have revision notes for this topic, see the ones we offer on the topics below.

### Video Tutorials

- 1.1 SI Units
- Quantities vs Units
- Base units
- Derived units
- Unit prefixes
- Estimating physical quantities
- The greek alphabet
- 1.2 Limitations of Physics Measurements
- Accuracy, precision, error and uncertainty
- Absolute uncertainty
- Percentage uncertainty in single measurements
- Percentage uncertainty in multiple measurements
- Percentage uncertainty in gradients
- Percentage difference
- The scientific community
- Variables
- Control variables, fair tests and causation
- Common control variables
- Anomolous results
- Results tables
- Results tables for log values
- Drawing graphs
- Gradients and y-intercepts
- Using micrometers and calipers
- How to read a vernier scale
- Parallax error and how to minimise it
- Zero error
- Light gates and data loggers
- Ticker timers

## 2. Particles and Radiation

### Revision Notes

### Video Tutorials

- 2.1 Particles

- 2.2 EM Radiation and Quantum Phenomena

## 3. Waves

### Revision Notes

- 3.1 Progressive and Stationary Waves
- An introduction to waves
- Wavelength, period, amplitude and phase difference
- The wave equation
- Reflection, refraction, diffraction and polarisation
- Amplitude and intensity
- The transverse nature of EM waves
- Wavelengths and frequencies of EM waves
- EM wave speed and refractive index
- Polarisation of waves
- Using microwaves to show polarisation
- Refraction and snell's law
- Total internal reflection and critical angle
- Refrection extra points
- Optical fibres
- Superposition of waves
- Coherence and path difference
- Phase and phase difference
- Two source interference of waves
- Young double slit experiment
- Diffraction gratings
- Velocity of waves on a string
- Standing waves on a string
- Stationary waves on a string
- Stationary waves in an open tube

### Video Tutorials

## 4. Mechanics and Materials

### Revision Notes

- 4.1 Force - Scalars and Vectors
- Scalars vs vectors
- Displacement vs distance
- Adding vectors - graphically and mathematically
- Subtracting vectors
- Resolving vectors
- 4.1 Force - Motion
- Speed, velocity and acceleration
- Distance-time and speed-time graphs
- Displacement-time and velocity-time graphs
- Tricky points on s-t and v-t graphs
- SUVAT equations of motion
- Deriving the SUVAT equations
- Solving SUVAT equations
- Stopping, thinking and braking distances
- Car safety features
- Projectile motion (part 1)
- Projectile motion (part 2)
- Projectile motion (part 3)
- The monkey and hunter example
- 4.1 Force
- Force, mass, acceleration and newton's second law
- Mass and weight
- Centre of mass and graivty
- Free body diagrams and objects on an inclined plane
- Drag, air resistance and water resistance
- Terminal velocity
- The principle of moments
- Torque of a couple
- Density
- Pressure
- Pressure in liquids and fluids
- Upthrust and archimedes' principle
- 4.1 Energy
- Work done
- Kinetic energy
- Potential energy
- Conservation of energy
- Conservation of mechanical energy
- Power
- Mechanical power
- Efficiency
- 4.1 Momentum
- Newton's first law
- Newton's second law
- Calculating net force and acceleration
- Newton's third law
- Linear momentum
- Conservation of linear momentum
- Impulse (and how to get a straw through a potato)
- Elastic and inelastic collisions
- 4.2 Materials

### Video Tutorials

## 5. Electricity

### Revision Notes

- 5.1 Current Electricity
- Intensity of current
- Quantity of charge
- Kirchhoff's first law
- Conductors, insulators and semi-conductors
- Circuit symbols
- Potential difference vs electromotive force
- Kirchhoff's second law
- The volt and W=VQ
- Energy gained by particles through a potential difference
- Resistance and Ohm's law
- Resistance and temperature
- Resistance and cold temperatures (with liquid nitrogen)
- IV Characteristics of resistors, lamps, diodes and LEDs
- The light dependent resistor
- The NTC thermistor
- Resistivity
- Electrical power
- The kilowatt hour
- Resistors in series
- Resistors in parallel
- How to make circuits that work every time
- Internal resistance and how to measure it
- Potential divider circuits
- How to solve circuit problems