AQA^C AS Physics data and formulae

For use in exams from the June 2016 Series onwards

DATA - FUNDAMENTAL CONSTANTS AND VALUES

Quantity	Symbol	Value	Units
speed of light in vacuo	С	$3.00 imes 10^8$	m s ⁻¹
permeability of free space	$\mu_0^{}$	$4\pi\times 10^{-7}$	H m ⁻¹
permittivity of free space	\mathcal{E}_0	8.85×10^{-12}	F m ⁻¹
magnitude of the charge of electron	е	1.60×10^{-19}	С
the Planck constant	h	$6.63 imes 10^{-34}$	J s
gravitational constant	G	$6.67 imes 10^{-11}$	$N m^2 kg^{-2}$
the Avogadro constant	$N_{\rm A}$	6.02×10^{23}	mol ⁻¹
molar gas constant	R	8.31	J K ⁻¹ mol ⁻¹
the Boltzmann constant	k	1.38×10^{-23}	J K ⁻¹
the Stefan constant	σ	5.67×10^{-8}	$W m^{-2} K^{-4}$
the Wien constant	α	2.90×10^{-3}	m K
electron rest mass (equivalent to $5.5 imes10^{-4}$ u)	$m_{ m e}$	9.11×10^{-31}	kg
electron charge/mass ratio	$\frac{e}{m_{\rm e}}$	1.76×10^{11}	$C kg^{-1}$
proton rest mass (equivalent to 1.00728 u)	$m_{ m p}$	$1.67(3) \times 10^{-27}$	kg
proton charge/mass ratio	$\frac{e}{m_{\rm p}}$	$9.58 imes 10^7$	$C kg^{-1}$
neutron rest mass (equivalent to 1.00867 u)	$m_{ m n}$	$1.67(5) \times 10^{-27}$	kg
gravitational field strength	g	9.81	N kg ⁻¹
acceleration due to gravity	g	9.81	m s ⁻²
atomic mass unit (1u is equivalent to 931.5 MeV)	u	1.661×10^{-27}	kg

- 4*ac*

ALGEBRAIC EQUATION

quadratic equation	$x = \frac{-b \pm \sqrt{b^2}}{2}$
	x = 2a
ASTRONOM	IICAL DATA

Body	Mass/kg	Mean radius/m
Sun	1.99×10^{30}	6.96×10^{8}
Earth	5.97×10^{24}	6.37×10^{6}

GEOMETRICAL EQUATIONS

arc length	$= r\theta$
circumference of circle	$=2\pi r$
area of circle	$=\pi r^2$
curved surface area of cylinder	$=2\pi rh$
area of sphere	$=4\pi r^2$
volume of sphere	$=\frac{4}{3}\pi r^3$

AQA

Particle Physics

Class	Name	Symbol	Rest energy/MeV
photon	photon	γ	0
lepton	neutrino	Ve	0
		v_{μ}	0
	electron	e^{\pm}	0.510999
	muon	μ^{\pm}	105.659
mesons	π meson	π^{\pm}	139.576
		π^0	134.972
	K meson	K^{\pm}	493.821
		K ⁰	497.762
baryons	proton	р	938.257
	neutron	n	939.551

Properties of quarks

antiquarks have opposite signs

Туре	Charge	Baryon number	Strangeness
u	$+\frac{2}{3}e$	$+\frac{1}{3}$	0
d	$-\frac{1}{3}e$	$+\frac{1}{3}$	0
S	$-\frac{1}{3}e$	$+\frac{1}{3}$	- 1

Properties of Leptons

		Lepton number
Particles:	$e^{-}, \nu_{e}; \mu^{-}, \nu_{\mu}$	+ 1
Antiparticles:	$e^+,\overline{\nu_e},\mu^+,\overline{\nu_\mu}$	- 1

Photons and energy levels

photon energy	$E = hf = hc / \lambda$
photoelectricity	$hf = \phi + E_{k(max)}$
energy levels	$hf = E_1 - E_2$
de Broglie wavelength	$\lambda = \frac{h}{p} = \frac{h}{mv}$

Waves

wave speed	$c = f\lambda$	period	$f = \frac{1}{T}$
first harmonic	$f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$		
fringe spacing	$w = \frac{\lambda D}{s}$	diffraction grating	$d\sin\theta = n\lambda$
refractive ind	lex of a substar	<i>nce</i> s, $n = \frac{c}{c_s}$	
for two differ	ent substances	of refractive in	dices n_1 and n_2 ,
law of refrac	tion $n_1 \sin \theta_1$	$n_1 = n_2 \sin \theta_2$	
critical angle	$e \sin \theta_{\rm c} = \frac{r}{r}$	$\frac{n_2}{n_1} \text{ for } n_1 > n_2$	2

Mechanics

moments	moment = Fd	
velocity and acceleration	$v = \frac{\Delta s}{\Delta t}$	$a = \frac{\Delta v}{\Delta t}$
equations of motion	v = u + at	$s = \left(\frac{u+v}{2}\right) t$
	$v^2 = u^2 + 2as$	$s = ut + \frac{at^2}{2}$
force	F = ma	
force	$F = \frac{\Delta(m\nu)}{\Delta t}$	
impulse	$F\Delta t=\Delta(mv)$	
work, energy and power	$W = F s \cos \theta$ $E_{\rm k} = \frac{1}{2} m v^2$	$\Delta E_{\rm p} = mg\Delta h$
	$P = \frac{\Delta W}{\Delta t}, P = Fv$	
	$efficiency = \frac{usef}{usef}$	ul output power
		nput power

Materials

density $\rho = \frac{m}{v}$ Hooke's law $F = k \Delta L$ Young modulus $= \frac{\text{tensile stress}}{\text{tensile strain}}$ $tensile stress = \frac{F}{A}$ tensile strain $= \frac{\Delta L}{L}$

energy stored
$$E = \frac{1}{2}F\Delta L$$

AQA AS PHYSICS DATA AND FORMULAE

Electricity

current and pd	$I = \frac{\Delta Q}{\Delta t} \qquad V = \frac{W}{Q} \qquad R = \frac{V}{I}$
resistivity	$ \rho = \frac{RA}{L} $
resistors in series	$R_{\rm T} = R_1 + R_2 + R_3 + \dots$
resistors in parallel	$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$
power	$P = VI = I^2 R = \frac{V^2}{R}$
emf	$\varepsilon = \frac{E}{Q}$ $\varepsilon = I(R + r)$