
### Work, Energy and Power (MCQ Only)

#### Q1.

A rope is used to apply a force *F* to a box as shown. The box is pulled a distance *d* along a horizontal surface.



Which of the following could be used to determine the work done on the box?

- $\triangle$  A Fd sin  $\theta$
- $\square$  B  $\frac{Fd}{\sin \theta}$
- $\square$  C Fd cos  $\theta$
- $\square$  D  $\frac{Fd}{\cos\theta}$

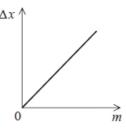
(Total for question = 1 mark)

### Q2.

Answer the question with a cross in the box you think is correct  $\boxtimes$ . If you change your mind about an answer, put a line through the box  $\boxtimes$  and then mark your new answer with a cross  $\boxtimes$ .

A power station provides electrical power at a mean rate of 3500 MW.

Which of the following gives the best estimate of the energy provided to consumers over a period of a year?


1 year = 
$$3.2 \times 10^7$$
s

- $\square$  A 1 × 10<sup>6</sup> J
- **B**  $1 \times 10^{11} \text{ J}$
- $\square$  **C** 1 × 10<sup>13</sup> J
- $\square$  **D** 1 × 10<sup>17</sup> J

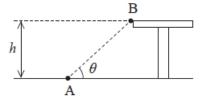
### Q3.

A spring is hung vertically and masses are added to the lower end.

The graph shows how the extension  $\Delta x$  of the spring varies with the mass m added.



The work done in extending the spring can be expressed as


(1)

- $\triangle$  A  $mg\Delta x$
- $\square$  B  $\frac{mg}{\Delta r}$
- $\square$  C  $\frac{1}{2}mg\Delta v$
- $\square$  **D**  $\frac{mg}{2\Delta x}$

(Total for question = 1 mark)

### Q4.

An object of mass m is moved from point A on the ground, to point B on a bench of height h as shown in the diagram.



Which of the following is a correct expression for the work done on the object?

(1)

- $\square$  A  $\frac{mgh}{\sin \theta}$
- $\square$  B  $\frac{mgh}{\cos\theta}$
- C mgh
- $\square$  **D**  $mghsin\theta$

#### Q5.

An object of weight 7 N is raised from a height of 2 m to a height of 8 m. The change in gravitational potential energy is

- B 56 J
- ☑ D 549 J

(Total for question = 1 marks)

#### Q6.

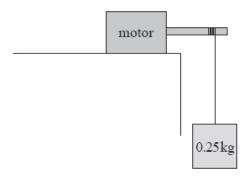
A car of mass  $1.5 \times 10^3$  kg is travelling at a speed of 25 m s<sup>-1</sup>. The driver applies the brakes and the car comes to rest.

Which of the following gives the decrease in kinetic energy, in joules, as the car is brought to rest?

- $\triangle$  A 750 × (25)<sup>2</sup>
- $\square$  B 750 ×  $\left(\frac{25}{2}\right)^2$
- $\square$  C 1500 × (25)<sup>2</sup>
- $\square$  **D** 1500  $\times \left(\frac{25}{2}\right)^2$

(Total for question = 1 mark)

### Q7.


A cyclist travels up a slope through a vertical height h in a time t. The mass of the cyclist and his bike is m.

The average power of the cyclist is

- $\triangle$  A  $\frac{mg}{t}$
- $\square$  B  $\frac{t}{mg}$
- $\square$  C  $\frac{mgh}{t}$
- $\square$  D  $\frac{t}{mgh}$

#### Q8.

A motor is used to lift an object as shown. The object is raised through a vertical height of 75 cm at a constant speed of  $0.40 \text{ m s}^{-1}$ .



Which of the following gives the rate of increase of potential energy of the object in watts?

- $\triangle$  **A** 0.25 × 9.81 × 0.40
- **■ B** 0.25 × 0.75
- $\square$  **C** 0.25 × 9.81 × 0.75
- $\square$  **D** 0.5 × 0.25 × (0.40)<sup>2</sup>

(Total for question = 1 mark)

#### Q9.

An object of mass m is moved from the bottom to the top of a slope. The vertical height of the slope is y.

The horizontal distance between the bottom and top of the slope is *x*.



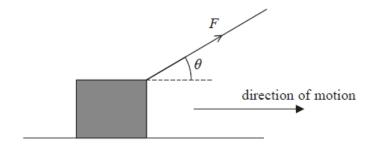
Which of the following gives the gain of gravitational potential energy of the object as it moves from the bottom to the top of the slope?

- B mgy
- $\square$  C mg(x+y)
- $\square$  **D**  $mg \sqrt{(x^2+y^2)}$

### Q10.

A car of mass  $1.2 \times 10^3$  kg is travelling at a speed of 18 m s<sup>-1</sup>. The driver applies the brakes and the car comes to rest.

What is the work done by the brakes in stopping the car?


- B 22 kJ
- □ C 190 kJ
- ☑ D 390 kJ

(Total for question = 1 mark)

### Q11.

A rope is used to pull a box a distance *d* along a horizontal surface at a constant speed.

A force F is applied to the rope and the rope is at an angle  $\theta$  to the horizontal.



Which of the following could be used to determine the work done on the box?

- $\square$  A  $\frac{Fd}{\cos\theta}$
- $\square$  **B**  $Fd\cos\theta$
- $\square$  C  $\frac{Fd}{\sin\theta}$
- $\square$  **D**  $Fd\sin\theta$

### Q12.

The velocity v of a non-relativistic particle can be expressed in terms of combinations of the following quantities: kinetic energy  $E_k$ , momentum p and mass m.

Which of the following expressions is correct?

- $\square \quad \mathbf{B} \quad \mathbf{v} = \sqrt{\frac{2E_{\mathbf{k}}}{m}}$
- $\square$  C  $v = \frac{E_k}{2p}$
- $\square \quad \mathbf{D} \quad \mathbf{v} = \frac{2E_{\mathbf{k}}}{pm}$

# Mark Scheme – Work, Energy and Power (MCQ Only)

### Q1.

| Question<br>Number | Answer                          | Additional Guidance                                                                                                                                                                                           | Mark |
|--------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                    | C is the only<br>correct answer | A is incorrect because the wrong trigonometric function has been used B is incorrect because the wrong trigonometric function has been used D is incorrect because the wrong algebraic equation has been used | 1    |

### Q2.

| Question<br>Number | Answer                       | Mark |
|--------------------|------------------------------|------|
|                    | $D 1 \times 10^{17} J$       | 1    |
|                    | A – this answer is incorrect |      |
|                    | B – this answer is incorrect |      |
|                    | C – this answer is incorrect |      |
|                    |                              |      |

### Q3.

| Question<br>Number | Answer                                                                                                                          | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|------|
| 11444001           | $C = \frac{1}{2} mg \Delta x$                                                                                                   | 1    |
|                    | Incorrect Answers:  A – no factor of $\frac{1}{2}$ B – incorrect equation and no factor of $\frac{1}{2}$ D – incorrect equation |      |

### Q4.

| Question<br>Number | Acceptable answers                                                                                        | Additional guidance | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------|---------------------|------|
|                    | С                                                                                                         | mgh                 | 1    |
|                    | A uses the distance AB rather than height<br>B uses a component of height<br>D uses a component of height |                     |      |

# Q5.

| Question<br>Number | Answer | Mark |
|--------------------|--------|------|
|                    | A      | 1    |

# Q6.

| Question | Answer                          | Additional Guidance                                                                                                                          | Mark |
|----------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------|
| Number   |                                 |                                                                                                                                              |      |
|          | A is the only<br>correct answer | B is incorrect because speed has been divided by 2<br>C is incorrect because $E_K = 0.5 \ mv^2$<br>D is incorrect because $E_K = 0.5 \ mv^2$ | 1    |

# Q7.

| Question<br>Number | Acceptable Answer | Additional guidance | Mark |
|--------------------|-------------------|---------------------|------|
|                    | С                 | $\frac{mgh}{t}$     | (1)  |

# Q8.

| Question<br>Number | Answer                          | Additional Guidance                                                                                                        | Mark |
|--------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------|------|
|                    | A is the only<br>correct answer | B is incorrect because $P = mgh/t = mgv$ C is incorrect because $P = mgh/t = mgv$ D is incorrect because $P = mgh/t = mgv$ | 1    |

# Q9.

| Question | Answer                                                         | Mark |
|----------|----------------------------------------------------------------|------|
| Number   |                                                                |      |
|          | $B$ - mgy, $E_P$ = mg $\Delta h$ , correct distance (vertical) | 1    |
|          | Incorrect Answers:                                             |      |
|          | A – incorrect distance (horizontal)                            |      |
|          | C – incorrect distance (horizontal + vertical)                 |      |
|          | D – incorrect distance (length of slope)                       |      |

# Q10.

| Question<br>Number | Answer                                                                                | Mark |
|--------------------|---------------------------------------------------------------------------------------|------|
|                    | C 190 kJ                                                                              | 1    |
|                    | Incorrect Answers:                                                                    |      |
|                    | A – The velocity was not squared when using the formula $E_k = \frac{1}{2} mv^2$ e.g. |      |
|                    | $\frac{1}{2}(1.2 \times 10^3)(18) = 11 \text{ kJ}$                                    |      |
|                    | B – The velocity was not squared and the ½ was omitted when using the                 |      |
|                    | formula $E_k = \frac{1}{2} mv^2$ e.g. $(1.2 \times 10^3)(18) = 22 \text{ kJ}$         |      |
|                    | D – The ½ was omitted when using the formula $E_k = \frac{1}{2} mv^2$ e.g. (1.2 ×     |      |
|                    | $10^3)(18)^2 = 390 \text{ kJ}$                                                        |      |

# Q11.

| Question<br>Number | Acceptable answers | Additional guidance | Mark |
|--------------------|--------------------|---------------------|------|
|                    | В                  |                     | 1    |

# Q12.

| Question<br>Number | Acceptable answers                                                | Additional guidance | Mark |
|--------------------|-------------------------------------------------------------------|---------------------|------|
|                    | The only correct answer is B A is not correct because this is not |                     | 1    |
|                    | dimensionally correct                                             |                     |      |
|                    | C is not correct because $\frac{E_k}{2p} = \frac{v}{4}$           |                     |      |
|                    | D is not correct because this is not dimensionally correct        |                     |      |