Electrical Quantities and Components (MCQ Only)

Q1.

A hair dryer is used for 3 minutes. The operating current is 6 A .
What charge flows in this time?A $\quad 0.03 \mathrm{C}$B 2 CC $\quad 18 \mathrm{C}$D 1080 C
(Total for question = 1 mark)

Q2.

The graph shows how the potential difference V varies with the current $/$ for a circuit component.

Which of the following could be the circuit component?A diode
B filament bulb
C ohmic resistor
D thermistor

Q3.

A light dependent resistor and a negative temperature coefficient thermistor are connected in series.

Which of the following combinations of illumination and temperature will result in the highest combined resistance?A dark and coldB dark and hotC light and coldD light and hot

Q4.

The diagram shows a graph of current / against potential difference V for an electrical component.

Which of the following components would produce a graph of this shape?A filament bulbB metallic conductorC negative temperature coefficient thermistorD ohmic conductor

Q5.

A cell is connected across a resistor. After a while the internal resistance of the cell increases.

Which row of the table correctly shows the change in the current in the circuit and the change in the terminal potential difference across the cell?

		Current	Terminal potential difference
	A	decreases	decreases
\square	B	decreases	increases
\square	C	increases	decreases
\square	D	increases	increases

(Total for question = 1 mark)

Q6.

The current-potential difference graphs for a resistor and a thermistor are shown.

The resistor and thermistor are connected in series to a 6 V battery.
What is the current, in amps, in the resistor?A 0.5B 1.0C 1.5D 2.0

Q7.

Which of the following graphs shows how the current / through a thermistor varies with the potential difference V across the thermistor?

A

C

B

DBCD

Q8.

A volt can be defined as aA coulomb per joule.B coulomb per second.C joule per coulomb.D joule per second.

Q9.
Resistivity can be described correctly asA resistance of a unit length.B resistance per unit area.C resistance per unit volume.D resistance of a unit cube

(Total for question = 1 mark)

Q10.
The intensity of light incident on a light dependent resistor (LDR) can vary both its electrical resistance R and the number of charge carriers per unit volume n. The light intensity on an LDR is increased.

Which row of the table describes the effect on R and n ?

	R	n
$\square \mathbf{A}$	decreases	decreases
\square B	decreases	increases
$\square \mathrm{C}$	increases	decreases
\square D	increases	increases

(Total for question = 1 mark)

Q11.
A constant current maintained in a copper wire causes the temperature of the wire to increase.

Which of the following does not increase?A amplitude of vibration of the lattice ionsB number of conduction electrons per unit volumeC rate of collision of conduction electrons with lattice ionsD rate of energy transfer from conduction electrons to lattice ions

Q12.

A light dependent resistor is connected across a cell of negligible internal resistance. The light intensity is increased.

Which of the following statements about the current is correct?A It decreases because there is an increase in the number of conduction electrons.B It increases because there is an increase in the number of conduction electrons.C It decreases because the amplitude of lattice vibrations decreases.D It increases because the amplitude of lattice vibrations increases.

(Total for question = 1 mark)

Q13.

A light dependent resistor (LDR) and a resistor are connected to a battery, as shown.

The intensity of light incident on the LDR increases.
Which row of the table describes the change in the resistance of the LDR and the change in the potential difference across the resistor?

	Resistance of LDR	Potential difference across the resistor
$\square \quad \mathbf{A}$	decreases	decreases
$\square \quad \mathrm{B}$	decreases	increases
$\square \quad \mathrm{C}$	increases	decreases
$\square \quad \mathrm{D}$	increases	increases

Q14.

A series circuit consists of two resistors with resistances R_{1} and R_{2} and a battery of potential difference V.

Which of the following gives the potential difference across the resistor with resistance R_{2} ?

A $\frac{R_{1}}{R_{2}} V$B $\frac{R_{2}}{R_{1}} V$C $\frac{R_{1}}{R_{1}+R_{2}} V$D $\frac{R_{2}}{R_{1}+R_{2}} V$

Q15.

A torch is switched on for 5 minutes. The current in the torch bulb is 6 mA .
Which of the following gives the charge, in coulombs, that flows in this time?A $6 \times 10^{-3} \times 5$B $\frac{6 \times 10^{-3}}{5}$C $\frac{6}{300}$D $6 \times 10^{-3} \times 300$

Q16.

A potential difference V is applied across the ends of a conductor. The drift velocity of the charge carriers in the conductor is v.

Which of the following expressions gives the relationship between drift velocity and potential difference?

A $v \propto \frac{1}{V}$
B $\quad v \propto \frac{1}{V^{2}}$C $v \propto V$D $v \propto V^{2}$

Q17.

Which of the following is the SI base unit for resistance?A ΩB VA^{-1}C $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-2}$D $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{C}^{-2}$

Q18.

A variable resistor is connected in a circuit as shown. The cell has internal resistance

The resistance of the variable resistor is increased.
Which row of the table is correct?

\square	A	Ammeter reading	Voltmeter reading
		increases	increases
\square	B	increases	decreases
\square	C	decreases	increases
\square	D	decreases	decreases

(Total for question = 1 mark)

Q19.

A student set up the circuit below and moved a sliding contact along a uniform conducting wire.

The student recorded the potential difference V across each length of wire / under test.

Which graph correctly shows how V varies with I ?

$\square \mathrm{A}$	\square B	$\square \mathrm{C}$	$\square \mathrm{D}$

(Total for question = 1 mark)

Q20.

The graph shows the variation of current / with potential difference V for a diode.

Which of the following statements is correct?A The diode has zero resistance when connected in the forward direction.B The diode has zero resistance when connected in the reverse direction.C The diode starts to conduct when the potential difference is about 0.7 V .D The diode stops conducting when the potential difference is about -0.7 V .

Q21.

A student carried out an experiment to investigate the current-potential difference characteristics of a diode using the circuit below.

He plotted the graph of potential difference V on the y-axis against the corresponding current I on the x-axis.

Which graph would be obtained by the student?

Mark Scheme - Electrical Quantities and Components

Q1.

Question Number	Answer	Mark
	D 1050 C	1
	Incorrect Answers: A-current divided by time, with the time in seconds B-current divided by time, with the time e in minutes C - correct formula of current \times time but the time is in minutes and not seconds	

Q2.

Question Number	Answer	Mark
	B filament bulb	l
	Incorrect Answers: A - this is not the graph for a diode C - this is not the graph for an ohmic resistor D- this is not the graph for a thermistor	

Q3.

Question Number	Answer	Mark
	A dark and cold	l
	Incorrect Answers: B - correct description for LDR but incorrect for thermistor C - incorrect description for LDR but correct for thermistor D - incorrect description for LDR and incorrect for thermistor	

Q4.

Question Number	Acceptable answers	Additional guidance	Mark
	C		1

Q5.

Question Number	Acceptable answers	Additional guidance	Mark
	The only correct answer is A B is not correct because V decreases as I decreases C i not correct because I decreases as R increases D is not correct because I decreases as R increases	decreases decreases	1

Q6.

Question Number	Acceptable answers	Additional guidance	Mark
	A The p.d. across the resistor added to the p.d. across the thermistor must equal 6 V. This occurs when the current is 0.5 A.	0.5	$\mathbf{1}$
	B assumes all the p.d. is across the thermistor C assumes that resistor and thermistor connected in parallel D assumes that the p.d. across the resistor and thermistor is more than 6 V		

Q7.

Question Number	Answer	Mark
B thermistor graph	$\mathbf{1}$	
	Incorrect Answers: A- ohmic conductor graph C- filament lamp graph D-diode graph	

Q8.

Question Number	Acceptable answers	Additional guidance	Mark
	C	joule per coulomb.	l
	Incorrect Answers: A is reciprocal of volt B is definition of amp D is definition of watt		

Q9.

Question number	Acceptable answers	Additional guidance	Mark
	D		$\mathbf{1}$

Q10.

Question Number	Acceptable answers	Additional guidance	Mark
	The only correct answer is B decreases \quad increases	C and D are incorrect as the resistance decreases A is incorrect as n increases	

Q11.

Question Number	Answer	Additional Guidance	Mark
	B is the only correct answer	A is incorrect because amplitude does increase C is incorrect because rate of collision does increase D is incorrect because rate of energy transfer does increase	$\mathbf{1}$

Q12.

Question Number	Acceptable answers	Additional guidance	Mark
	The only correct answer is B A is not correct because R decreases as more conduction electrons C is not correct because lattice vibrations not affected D is not correct because lattice vibrations not affected	It increases because there is an increase in the number of conduction electrons.	1

Q13.

Question Number	Acceptable answers	Additional guidance	Mark
	The only correct answer is B A is not correct as the p.d. across the resistor will increase C is not correct as the resistance of the LDR will decrease D is not correct as the resistance of the LDR will decrease		$\mathbf{1}$

Q14.

Question Number	Answer	Mark
	D $\frac{R_{2}}{R_{1}+R_{2}} \boldsymbol{V}$	l
	Incorrect Answers: A - this looks similar to the correct formula but has an incorrect resistance as the numerator and does not have the total resistance as the denominator B - this looks similar to the correct formula with the correct resistance as the numerator but does not have the total resistance as the denominator C - This would give the PD across resistor R_{1} and not R_{2}	

Q15.

Question Number	Answer	Additional Guidance	Mark
	D is the only correct answer	A is incorrect because the time has not been converted to seconds B is incorrect because $Q=I t$ and time has not been converted to seconds C is incorrect because $Q=I t$	$\mathbf{1}$

Q16.

Question Number	Acceptable answers	Additional guidance	Mark
	C		1

Q17.

Question Number	Answer	Mark
	C $\mathbf{k g ~ m}^{2} \mathbf{s}^{-\mathbf{3}} \mathrm{A}^{-\mathbf{2}}$	$\mathbf{1}$
	Incorrect Answers: $\mathrm{A}-\Omega$ is not a base unit $\mathrm{B}-\mathrm{V}$ is not a base unit $\mathrm{D}-\mathrm{C}$ is not a base unit	

Q18.

Question Number	Answer	Mark
	C ammeter reading decreases, voltmeter reading increases	$\mathbf{1}$
	A-the ammeter reading does not increase B - neither occurs D- the voltmeter reading does not decrease	

Q19.

Question Number	Acceptable Answer	Additional Guidance	Mark	
	A			

Q20.

Question Number	Answer	Mark
	C The diode starts to conduct when the potential difference is about 0.7 V.	l
	Incorrect Answers: A - The diode has zero resistance when connected in the forward direction B - The diode has zero resistance when connected in the reverse direction. D - The diode stops conducting when the potential difference is about -0.7 V.	

Q21.

Question Number	Acceptable Answer	Additional Guidance	Mark
	C		

