1. The points A, B and C have position vectors $3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k},-\mathbf{i}+6 \mathbf{k}$ and $7 \mathbf{i}-4 \mathbf{j}-2 \mathbf{k}$ respectively. M is the midpoint of $B C$.
(a) Show that the magnitude of $\overrightarrow{O M}$ is equal to $\sqrt{17}$.
(b) Point D is such that $\overrightarrow{B C}=\overrightarrow{A D}$. Show that position vector of the point D is $11 \mathrm{i}-8 \mathrm{j}$
2. The equations of two lines are

$$
\mathbf{r}=\left(\begin{array}{l}
3 \\
0 \\
2
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right) \text { and } \mathbf{r}=\left(\begin{array}{r}
-1 \\
8 \\
2
\end{array}\right)+\mu\left(\begin{array}{c}
-3 \\
1 \\
-5
\end{array}\right)
$$

Find the coordinates of the point where these lines intersect.
3. (i) Write down a vector equation of the line through the points $A(5,1,9)$ and $B(8,7,15)$.
P is the point $(11,-2,15)$.
(ii) Show that triangle $A P B$ is isosceles and find angle $P A B$.

The point D lies on the line through A and B. Angle $P A D=$ angle $P D A$.
(iii) Find the coordinates of D.
4.

Points A, B and C have position vectors $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{c}2 \\ -1 \\ 5\end{array}\right)_{\text {and }}\left(\begin{array}{c}-4 \\ 0 \\ 3\end{array}\right)_{\text {respectively. }}$
(a) Find the exact distance between the midpoint of $A B$ and the midpoint of $B C$.

(b) Find all the possible pairs of x and z.
5.

The points A and B have position vectors $\left(\begin{array}{c}1 \\ -2 \\ 5\end{array}\right)_{\text {and }}\left(\begin{array}{c}-3 \\ -1 \\ 2\end{array}\right)_{\text {respectively. }}$
(a) Find the exact length of $A B$.
(b) Find the position vector of the midpoint of $A B$.

The points P and Q have position vectors $\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)_{\text {and }}\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)_{\text {respectively. }}$
(c) Show that $A B P Q$ is a parallelogram.
6. The points A, B and C have position vectors a, b and c , relative to an origin O, in three dimensions. The figure OAPBSCTU is a cuboid, with vertices labelled as in the following diagram. M is the midpoint of $A U$.

Prove that the lines $O M$ and $A S$ intersect, and find the position vector of the point of intersection.
7. Points A and B have position vectors a and b . Point C lies on $A B$ such that $A C: C B=p: 1$.
(a) Show that the position vector of C is $\frac{1}{p+1}(\mathbf{a}+p \mathbf{b})$.

It is now given that $\mathbf{a}=2 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}$ and $\mathbf{b}=-6 \mathbf{i}+4 \mathbf{j}+12 \mathbf{k}$, and that C lies on the y-axis.
(b) Find the value of p.
(c) Write down the position vector of C.

Mark scheme

Page 6 of 13

				Many candidates did not know where to begin and often failed to score. However, a variety of successful approaches were taken and some excellent work demonstrating thorough understanding was seen.	
		Total	9		
4	a	$\left.\begin{array}{l} \text { Postion vectors of midpooits } A B \& B C \text { are } \\ 2.5^{2.5}+1^{2}(+09 \\ 0.5 \\ 4 \end{array}\right)\left(\begin{array}{c} -1 \\ -0.5 \\ 4 \end{array}\right) .$	M1(AO 1.19) A1(AO 1.1) M1(AO 1.1) A1(AO 1.1) [4]	Correct method for one midpoint Both midpoints correct ft their midpoints; $\sqrt{ }$ not necessary for M1	
	b	$\begin{aligned} & \overrightarrow{A B}=\left(\begin{array}{c} 1 \\ -3 \\ 2 \end{array}\right) \quad \overrightarrow{C D}=\left(\begin{array}{c} -4-x \\ 6 \\ 3-z \end{array}\right) \\ & \overrightarrow{C D}=-2 \overrightarrow{A B} \end{aligned}$	M1 (AO 3.1a) M1 (AO 1.2) A1(AO 1.1) A1(AO 1.1) [4]	For scale factor -2	
		Total	8		

5	a	$\begin{aligned} & \left(1-(-3)^{2}+\left(-2-(-1)^{2}+(5-2)^{2}(=26)\right.\right. \\ & \text { Length }=\sqrt{26} \text { or } 5.10 \text { or } 5.1 \text { (} 2 \text { st }) \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { M1 } \\ (A 0.1 .12) \\ \text { A1 } \end{array} \\ (A 0.1) \\ {[22]} \end{gathered}$	Attempt. Allow with one sign error	\checkmark not nec'y
				Examiner's Comments This question was very well answered. A few candidates made sign errors	
	-	$\left(\begin{array}{c}-1 \\ -1.5 \\ 3.5\end{array}\right)$	[1]	Examiner's Comments A surprisingly large number of candidates simp did not understand the concept of a "position	halved their answer to part (a). Perhaps they ector"
		$\begin{aligned} & \overrightarrow{B A}=\left(\begin{array}{c} 4 \\ -1 \\ 3 \end{array}\right) \\ & \overrightarrow{P Q}=\left(\begin{array}{l} 5 \\ 1 \\ 3 \end{array}\right)-\left(\begin{array}{l} 1 \\ 2 \\ 0 \end{array}\right) \quad\left(=\left(\begin{array}{c} 4 \\ -1 \\ 3 \end{array}\right)\right) \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { M1 } \\ (A 02.1) \end{array} \\ \\ \text { M1 } \\ \text { (AO 1.1) } \end{gathered}$	or quote result for $B A$ from (b) or (a)(i) or similar methods with $A Q$ \& $B P$ or $A B$ and $Q P$ etc Allow find eg $A B$ and $P Q$ or $\overrightarrow{B A}=\overrightarrow{P Q}$ or $\|B A\|=\|P Q\| \&\|B A\|=$ $\|A Q\|$ shown \& stated or $B A / / P Q_{\text {\& }}$ 	SC Incorrect, but equal, vectors $B A$ \& $P Q$ with correct conclusion SC B1 Allow without method SC Lengths only seen: M1M0 Just $\|B A\|=\|P Q\| A 0$

			and hence $A B P Q$ is a parallelogram (AG)	$\begin{gathered} \text { A1 } \\ \text { (AO 2.2a) } \\ {[3]} \end{gathered}$	stated Both statements needed, dep M1M1 Examiner's Comments Only a minority of candidates answered this ques forms of one pair of sides. Many found the vec commented either that both pairs consisted of four sides and commented that both pairs con found the vector form for two opposite sides a parallel, $A B P Q$ is a parallelogram. A few candi Some did not use correct vector notation. Son column vector notation by the $\mathrm{i}, \mathrm{j}, \mathrm{k}$ notation. Son opposite sides.	estion in the most efficient way, using the vector or forms of both pairs of sides. Then they wo parallel lines, or they found the lengths of all sisted of lines of equal length. Some candidates d then stated that because these two sides are ates made sign errors while finding vectors. e candidates (quite reasonably) replaced the me candidates discussed the "gradients" of
			Total	6		
6			$A U=O S=\mathbf{b}+\mathbf{c}$ $O M=O A+0.5 A U=\mathbf{a}+0.5(\mathbf{b}+\mathbf{c})$ $A S=\mathrm{b}+\mathrm{c}-\mathrm{a}$ Let X lie on $O M$ such that $O X=\mu O M$ Let Y lie on $A S$ such that $A Y=\lambda A S$ $O X=\mu(\mathbf{a}+0.5 \mathbf{b}+0.5 \mathbf{c})$ $O Y=\mathbf{a}+\lambda(\mathbf{b}+\mathbf{c}-\mathbf{a})$ Let $O X=O Y$ $\mu(\mathbf{a}+0.5 \mathbf{b}+0.5 \mathbf{c})=\mathbf{a}+\lambda(\mathbf{b}+\mathbf{c}-\mathbf{a})$	B1 (AO3.1a) B1 (AO1.1a) M1 (AO2.1) A1 (AO1.1) M1FT (AO3.1a)	One of these stated or implied One correct	

