1.

The points A, B and C have position vectors $\binom{-2}{1},\binom{2}{5}$ and $\binom{6}{3}$ respectively. M is the midpoint of $B C$.
(a) Find the position vector of the point D such that $\overrightarrow{B C}=\overrightarrow{A D}$.
[3]
(b) Find the magnitude of $\overrightarrow{A M}$.
2. The point A has position vector $\mathbf{i}-2 \mathbf{j}$. The point B is such that $|\overrightarrow{O B}|=|\overrightarrow{O A}|$ and $\overrightarrow{O B}$ is perpendicular to $\overrightarrow{O A}$.
(a) (i) Find $|\overrightarrow{O B}|$.
(ii) Find the two possible directions of $\overrightarrow{O B}$, giving your answers correct to the nearest degree.

The point C is such that $|\overrightarrow{A C}|=2$.
(b) Find the maximum and minimum values of $|\overrightarrow{O C}|$.
3. Vectors \mathbf{a} and \mathbf{b} are defined as follows: $\mathbf{a}=2 \mathbf{i}+6 \mathbf{j}$ and $\mathbf{b}=2 \mathbf{i}-4 \mathbf{j}$.
(a) Given that $p a+q b=6 i-7 j$, find the values of the constants p and q.
(b) It is now given instead that $|\mathbf{a}+k \boldsymbol{b}|=5$. Use the diagram below to find the two possible
values of the constant k.

4. $O A B C$ is a parallelogram with $\overrightarrow{O A}=\mathbf{a}_{\text {and }} \overrightarrow{O C}=\mathbf{c}$. P is the midpoint of $A C$.

(a) Find the following in terms of \mathbf{a} and c , simplifying your answers.
(i) $\overrightarrow{A C}$
(ii) $\overrightarrow{O P}$
(b) Hence prove that the diagonals of a parallelogram bisect one another.
5. Vector $\mathbf{v}=\mathbf{a}+0.6 \mathbf{j}$, where a is a constant.
(a) Given that the direction of v is 45°, state the value of a.
(b) Given instead that \mathbf{v} is parallel to $8 \mathbf{i}+3 \mathbf{j}$, find the value of a.
(c) Given instead that v is a unit vector, find the possible values of a.

Mark scheme

Question		Answer/Indicative content	Marks	Guidance	
1	a	$\begin{aligned} & \overrightarrow{B C}=\binom{4}{-2} \\ & \binom{4}{-2}=\binom{x}{y}-\binom{-2}{1}=\mathbf{d}-\mathbf{a}=\overrightarrow{A D} \\ & \overrightarrow{O D}=\binom{2}{-1} \end{aligned}$	B1(AO1.1) M1(AO3.1a) A1(AO1.1)		
		$\begin{aligned} & \overrightarrow{O M}=\binom{4}{4} \\ & \overrightarrow{A M}=\overrightarrow{O M}-\overrightarrow{O A}=\binom{6}{3} \\ & \|\overrightarrow{A M}\|=\sqrt{6^{2}+3^{2}}=3 \sqrt{5} \end{aligned}$	B1(AO1.1) M1(AO1.1) A1(AO2.2a)	soi Accept 6.71	
		Total	6		
2	a	$\begin{aligned} & \text { i) }\|\overrightarrow{O B}\|=\sqrt{1^{2}+2^{2}} \\ & \mathrm{Mag}=\sqrt{5} \text { or } 2.24(3 \mathrm{sf}) \\ & \text { ii) Direction }\left(=\tan ^{-1}(0.5)\right) \quad=27^{\circ} \\ & \&\left(180^{\circ}+27^{\circ} \text { or } \tan ^{-1}(-0.5)\right)=207^{\circ} \end{aligned}$	M1(AO1.2) A1(AO1.1) [2] M1(AO1.1a) A1f(AO1.1) [2]	ft their 27°	
	b	For max \& min $O C, C$ lies on $O A$ $O C=O A \pm 2$ Max $O C=\sqrt{ } 5+2$ or $4.24 \quad(3 \mathrm{sf})$ Min $O C=\sqrt{5}-2 \quad$ or $0.236(3 \mathrm{sf})$	M1(AO2.1) M1(AO3.1a) A1(AO2.2a) A1(AO1.1)	May be implied, eg by diagram Their $O A$ (from (a)) ± 2	
		Total	8		
3	a	$\begin{aligned} & 2 p+2 q=6 \\ & 6 p-4 q=-7 \\ & \text { eg } 4 p+4 q=12 \end{aligned}$	B1(AO3.1a)		

				some cases confusing it with "perpendicular". Thus many wrote that a +c is perpendicular to $\mathrm{a}-\mathrm{c}$, and that this somehow proves that the diagonals bisect one another. Perhaps the majority of candidates did not know how to start answering this question at all. An example of a candidate's solution that suggested they had no understanding of proof by vectors was as follows: " $\mathrm{BO}=\mathrm{AC}$. As they are the same length it means they would both meet in the centre, hence meaning they bisect one another."	
		Total	7		
5	a	$a=0.6$	B1 (AO 1.2) [1]	State correct value for a	
	b	$3 k=0.6 \text {, so } k=0.2$ $a=8 \times 0.2=1.6$	$\begin{gathered} \text { M1 (AO } \\ \text { 1.1a) } \end{gathered}$ A1 (AO 1.1)	Attempt to find scale factor Obtain $a=1.6$	$\begin{aligned} & \text { OR } 0.6 k=3 \text {, so } \\ & k=5 \end{aligned}$
	c	$\begin{aligned} & \sqrt{a^{2}+0.6^{2}}=1 \\ & z=0.64 \\ & a= \pm 0.8 \end{aligned}$	B1 (AO 1.2) M1 (AO 1.1a) A1 (AO 1.1)	Correct definition for unit vector seen or implied Attempt to find at least one value for a Both correct values for a	Allow BOD for $a^{2}+$ $0.6^{2}=1$, with no square root seen
		Total	6		

