1.

i. Show that the equation $2 \sin x=\frac{4 \cos x-1}{\tan x}$ can be expressed in the form $6 \cos ^{2} x-\cos x 2=0$.
ii. Hence solve the equation $2 \sin x=\frac{4 \cos x-1}{\tan x}$, giving all values of x between 0° and 360°.
2. Solve each of the following equations, for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
i. $\sin \frac{1}{2} x=0.8$
ii. $\sin x=3 \cos x$
3. i. Show that the equation

$$
\sin x-\cos x=\frac{6 \cos x}{\tan x}
$$

can be expressed in the form

$$
\tan ^{2} x-\tan x-6=0
$$

ii. Hence solve the equation $\sin x-\cos x=\frac{6 \cos x}{\tan x}$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
4. In this question you must show detailed reasoning.

Solve the equation $2 \cos ^{2} x=2-\sin x$ for $0^{\circ} \leq x \leq 180^{\circ}$.
5. In this question you must show detailed reasoning.

Solve the equation $3 \sin ^{2} \theta-2 \cos \theta-2=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
6. In this question you must show detailed reasoning.

Given that $5 \sin 2 x=3 \cos x$, where $0^{\circ}<x<90^{\circ}$, find the exact value of $\sin x$.
7. In this question you must show detailed reasoning.

Solve the equation $\tan 2 x=-\sqrt{3}$ for $0^{\circ} \leqslant x<360^{\circ}$.
8. The cubic polynomial $f(x)$ is defined by $f(x)=4 x^{3}+9 x-5$.
(a) Show that $(2 x-1)$ is a factor of $f(x)$ and hence express $f(x)$ as the product of a linear factor and a quadratic factor.
(b) (a) Show that the equation

$$
4 \sin 2 \theta \cos 2 \theta+\frac{5}{\cos 2 \theta}=13 \tan 2 \theta
$$

can be expressed in the form

$$
\begin{equation*}
4 \sin ^{3} 2 \theta+9 \sin 2 \theta-5=0 \tag{4}
\end{equation*}
$$

(b) Hence solve the equation

$$
4 \sin 2 \theta \cos 2 \theta+\frac{5}{\cos 2 \theta}=13 \tan 2 \theta
$$

for $0 \leq \theta \leq 2 p$. Give each answer in an exact form.
9. (a) Show that the equation

$$
2 \sin x \tan x=\cos x+5
$$

can be expressed in the form

$$
\begin{equation*}
3 \cos ^{2} x+5 \cos x-2=0 \tag{3}
\end{equation*}
$$

(b) Hence solve the equation

$$
2 \sin 2 \theta \tan 2 \theta=\cos 2 \theta+5
$$

giving all values of θ between 0° and 180°, correct to 1 decimal place.
10.
(a) Solve the equation $\sin ^{2} \theta=0.25$ for $0^{\circ} \leq \theta<360^{\circ}$.
(b) In this question you must show detailed reasoning.

Solve the equation $\tan 3 \phi=\sqrt{3}_{\text {for }} 0^{\circ} \leq \emptyset<90^{\circ}$.
11. (a) Given that $\sqrt{2 \sin ^{2} \theta+\cos \theta}=2 \cos \theta$, show that $6 \cos ^{2} \theta-\cos \theta-2=0$.
(b) In this question you must show detailed reasoning.

Solve the equation

$$
6 \cos ^{2} \theta-\cos \theta-2=0,
$$

giving all values of i between 0° and 360° correct to 1 decimal place.
(c) Explain why not all the solutions from part (b) are solutions of the equation

$$
\sqrt{2 \sin ^{2} \theta+\cos \theta}=2 \cos \theta .
$$

Mark scheme

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& ii \& \[
\tan x=3
\]
\[
x=71.6^{\circ}, 252^{\circ}
\] \& B1 \& \begin{tabular}{l}
State \(\tan x=3\) \\
Attempt to solve \(\tan x=k\) \\
Obtain \(71.6^{\circ}\) and \(252^{\circ}\), or better \\
Examiner's Comments \\
This part of the question was better attempted, and most candidates scored full marks with ease. A few struggled to find the second angle, or lost the final mark through a lack of precision when rounding. Some candidates made life difficult for themselves by attempting to square both sides and use \(\sin ^{2} x+\) \(\cos ^{2} x \equiv 1\), but this was very rarely done correctly. Potential pitfalls included forgetting to square the coefficient of 3 , omitting to use both the positive and negative square roots and finally realising that only two of the four solutions were valid. At least this was a valid method, which could not be said for those candidates who started with \(\sin x+\cos x=1\).
\end{tabular} \& \begin{tabular}{l}
Allow B1 for correct equation even if no, or an incorrect, attempt to solve Give BOD on notation eg \(\sin / \cos (x)\) as long as correct equation is seen or implied at some stage \\
Not dep on B1, so could gain M1 for solving eg \(\tan x=1 / 3\) \\
Could be implied by a correct solution \\
A0 if extra incorrect solutions in range \\
Alt method: \\
B1 Obtain 10sin \(2 x=9\) or \(10 \cos ^{2} x=1\) \\
M1 Attempt to solve \(\sin ^{2} x=k\) or \(\cos ^{2} x\) \\
\(=k\) (allow M1 if just the positive square root used) \\
A1 Obtain \(71.6^{\circ}\) and \(252^{\circ}\), with no extra incorrect solutions in range \\
SR If no working shown at all then allow B1 for each correct angle (max B1 if additional incorrect angles), but allow full credit if \(\tan x=3\) seen first
\end{tabular} \\
\hline \& \& Total \& 6 \& \& \\
\hline 3 \& i \& \[
\begin{aligned}
\& \tan x(\sin x-\cos x)=6 \cos x \\
\& \tan x(\sin x / \cos x-1)=6 \\
\& \tan x(\tan x-1)=6 \\
\& \tan ^{2} x-\tan x=6 \\
\& \tan ^{2} x-\tan x-6=0 \text { AG }
\end{aligned}
\] \& M1

A1 \& \begin{tabular}{l}
Use $\tan x=\frac{\sin x}{\cos x}$.orrectly once

Obtain $\tan ^{2} x-\tan x-6=0$

 \&

Must be used clearly at least once either explicitly or by writing eg 'divide by $\cos x$ at side of solution Allow M1 for any equiv eg $\sin x=\cos x$ $\tan x$

Allow poor notation eg writing just tan rather than $\tan x$

Correct equation in given form, including $=0$
\end{tabular}

\hline
\end{tabular}

(2
(1)

				domain. Some gave answers in radians.		
		Total	6			
11	a	$2\left(1-\cos ^{2} \theta+\cos \theta=4 \cos ^{2} \theta\right.$ $2-2 \cos ^{2} \theta+\cos \theta=4 \cos ^{2} \theta$ $6 \cos ^{2} \theta-\cos \theta-2=0$	$\begin{gathered} \text { M1 } \\ \text { (AO3.1a) } \\ \\ \text { A1 } \\ \text { (AO2.2a) } \\ \text { [2] } \end{gathered}$	Correctly removing square root and use of $\sin ^{2} \theta=1-\cos ^{2} \theta$ to obtain an equation in cos only AG - sufficient working must be shown to establish given result		
	b	$\begin{aligned} & \begin{array}{l} \mathrm{DR} \\ (2 \cos \theta+1)(3 \cos \theta-2)=0 \\ \cos \theta=-\frac{1}{2} \text { and } \cos \theta=\frac{2}{3} \\ \cos \theta=\frac{2}{3} \Rightarrow \theta=48.2,311.8 \\ \cos \theta=-\frac{1}{2} \Rightarrow \theta=120,240 \end{array} \end{aligned}$	$\begin{gathered} \text { M1 (AO1.1) } \\ \text { A1 (AO1.1) } \\ \text { A1 } \\ \text { (AO1.1) } \\ \text { M1 } \\ \text { (AO2.2a) } \\ {[4]} \end{gathered}$	Correct method for solving quadratic Any two correct values All four correct values	May use formula or completing the square 48.189..., $311.810 \ldots$ And no others	
		$\begin{gathered} \frac{1}{2}_{\text {E.t. }{ }^{\text {E. Since } \operatorname{cHS} \text { of the }}} \\ \text { equation } \sqrt{2 \sin ^{2} \theta+\cos \theta}=2 \cos \theta \end{gathered}$	$\begin{gathered} \mathrm{E} 1(\mathrm{AO} 2.3) \\ {[1]} \end{gathered}$			

