1. The random variable G has the distribution $N\left(\mu, \sigma^{2}\right)$. One hundred observations of G are taken. The results are summarised in the following table.

Interval	$G<40.0$	$40.0 \preccurlyeq G<60.0$	$G \geqslant 60.0$
Frequency	17	58	25

i. By considering $\mathrm{P}(G<40.0)$, write down an equation involving μ and σ.
[2]
ii. Find a second equation involving μ and σ. Hence calculate values for μ and σ.
[4]
iii. Explain why your answers are only estimates.
[1]
2. The random variable Y is normally distributed with mean μ and variance σ^{2}. It is found that $\mathrm{P}(Y>150.0)=0.0228$ and $\mathrm{P}(Y>143.0)=0.9332$. Find the values of μ and σ.
[6]
3. The mass, in kilograms, of a packet of flour is a normally distributed random variable with mean 1.03 and variance σ^{2}. Given that 5% of packets have mass less than 1.00 kg , find the percentage of packets with mass greater than 1.05 kg .
[6]
4. (a) The heights of English men aged 25 to 34 are normally distributed with mean 178 cm and standard deviation 8 cm . Three English men aged 25 to 34 are chosen at random. Find the probability that all three of them have a height less than 194 cm .
(b) The diagram shows the distribution of heights of Scottish women aged 25 to 34 .

It is given that the distribution is approximately normal. Use the diagram above to estimate the standard deviation of these heights, explaining your method.
5. A market gardener records the masses of a random sample of 100 of this year's crop of plums. The table shows his results.

Mass, m grams	$m<25$	$25 \leq m<$ 35	$35 \leq m<$ 45	$45 \leq m<$ 55	$55 \leq m<$ 65	$65 \leq m<$ 75	$m \geq 75$
Number of plums	0	3	29	36	30	2	0

(a) Explain why the normal distribution might be a reasonable model for this distribution.

The market gardener models the distribution of masses by $\mathrm{N}\left(47.5,10^{2}\right)$.
(b) Find the number of plums in the sample that this model would predict to have masses in the range
(i) $35 \leq m<45$,
(ii) $m<25$.
(c) Use your answers to parts (b)(i) and (b)(ii) to comment on the suitability of this model.

The market gardener plans to use this model to predict the distribution of the masses of
(d) next year's crop of plums. Comment on this plan.
6. The variable X has the distribution $N\left(20,4^{2}\right)$.
(a) Given that $P(X<a)=0.1$, find a.
(b) Given that $\mathrm{P}(b<X<c)=0.95$, find a possible pair of values of b and c.
[2]
7. The heaviest 17% of rococo apples are classified as large, and the lightest 17% are classified as small. The remainder are classified as medium. The limits within which the masses of medium rococo apples lie are 96 g and 120 g . Stating a necessary assumption, estimate the mass of the heaviest rococo apple.
8. The masses, X grams, of tomatoes are normally distributed. Half of the tomatoes have masses greater than 56.0 g and 70% of the tomatoes have masses greater than 53.0 g .
(a) Find the percentage of tomatoes with masses greater than 59.0 g .
(b) Find the percentage of tomatoes with masses greater than 65.0 g .
(c) Given that $\mathrm{P}(a<X<50)=0.1$, find a.
9. (a) The variable X has the distribution $\mathrm{N}(20,9)$.
(i) Find $\mathrm{P}(x>25)$.
(ii) Given that $\mathrm{P}(X>a)=0.2$, find a.
(iii) Find b such that $\mathrm{P}(20-b<X<20+b)=0.5$.
(b) The variable Y has the distribution $\mathrm{N}\left(\mu, \frac{\mu^{2}}{9}\right.$. Find $\mathrm{P}(Y>1.5 \mu)$.

The probability that Paul's train to work is late on any day is 0.15 , independently of other days.
The number of days on which Paul's train to work is late during a 450-day period is
(a)
denoted by the random variable Y. Find a value of a such that $\mathrm{P}(Y>a) \approx \frac{1}{6}$.

In the expansion of $(0.15+0.85)^{50}$, the terms involving 0.15^{r} and 0.15^{r+1} are denoted by T_{r} and T_{r+1} respectively.
(b) Show that $\frac{T_{r}}{T_{r+1}}=\frac{17(r+1)}{3(50-r)}$
(c) The number of days on which Paul's train to work is late during a 50-day period is modelled by the random variable X.
(i) Find the values of r for which $\mathrm{P}(X=r \leq \mathrm{P}(X=r+1)$.
(ii) Hence find the most likely number of days on which the train will be late during a 50day period.
11. The finance department of a retail firm recorded the daily income each day for 300 days. The results are summarised in the histogram.

(a) Find the number of days on which the daily income was between $£ 4000$ and $£ 6000$.
(b) Calculate an estimate of the number of days on which the daily income was between $£ 2700$ and $£ 3600$.
(c) Use the midpoints of the classes to show that an estimate of the mean daily income is $£ 3275$.

An estimate of the standard deviation of the daily income is $£ 1060$. The finance department uses the distribution $\mathrm{N}\left(3275,1060^{2}\right)$ to model the daily income, in pounds.
(d) Calculate the number of days on which, according to this model, the daily income would be between $£ 4000$ and $£ 6000$.

It is given that approximately 95% of values of the distribution $N\left(\mu, \sigma^{2}\right)$ lie within the range
(e) $\mu, \pm 2 \sigma$. Without further calculation, use this fact to comment briefly on whether the proposed model is a good fit to the data illustrated in the histogram.
12. A fair dice is thrown 1000 times and the number, X, of throws on which the score is 6 is noted.
(a) (i) State the distribution of X.
(ii) Explain why a normal distribution would be an appropriate approximation to the distribution of X.
(b) Use a normal distribution to find two positive integer values, a and b, such that P ($a<X<$ b) ≈ 0.4.

For your two values of a and b, use the distribution of part (a)(i) to find the value of $\mathrm{P}(a<X$
(c) <b), correct to 3 significant figures.

Mark scheme

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Answer/Indicative content \& Marks \& Part marks and guidance \&

\hline 1 \& i \& $$
\frac{\mu-40}{\sigma}=0.9544
$$ \& M1

B1 \& | Standardise with μ and σ and equate to Φ^{-1}, allow σ^{2} but not $\sqrt{ } n$, allow $1-$, cc, wrong signs. P(...): MO here. But can recover both marks from part (ii). |
| :--- |
| [0.954, 0.955] seen |
| Examiner's Comments |
| Placing a question about finding normal parameters in the context of a frequency distribution did not worry most candidates, though some inevitably attempted to use a factor of $\sqrt{ } 100$ in the standard deviation. Signs were generally well handled, and the correct answers were often seen. Only a few used 0.17 or 0.25 in their equations, but continuity corrections in this context continue to be seen quite often. If the distribution is stated to be normal then a continuity correction must not be used. | \&

\hline \& ii \& | $\frac{60-\mu}{\sigma}=0.674(5)$ |
| :--- |
| Solve to get $\sigma=12.3 \quad[12.278]$ $\mu=51.7(18)$ | \& | M1 |
| :--- |
| B1 |
| A1 |
| A1 | \& | Standardise as in (i) but do not give if " 1 -" or wrong signs in eitherequation |
| :--- |
| [0.674, 0.675] seen. (Other errors lead to loss of A marks.) |
| σ, a.r.t. 12.3, cwo |
| μ, a.r.t. 51.7, cwo [NB: CARE/ either or both can be obtained from wrong equns.] \{note for scoris zoning - (i) to be visible in marking (ii)\} |
| Examiner's Comments |
| Placing a question about finding normal parameters in the context of a frequency distribution did not worry most candidates, though some inevitably attempted to use a factor of $\sqrt{ } 100$ in the standard deviation. Signs were generally well handled, and the correct answers were often seen. Only a few used 0.17 or 0.25 in their equations, but continuity corrections in this context continue to be seen quite often. If the distribution is stated to be normal then a continuity correction must not be used. | \&

\hline
\end{tabular}

	iii	Based on a sample / small sample, etc	B1	Any similar comment, e.g. "frequencies not probabilities" (but not just " n is smal") and no wrong comments. Not "because data is grouped". No scattergun. Examiner's Comments Many candidates realised that the probabilities were based on only a sample rather than on the whole population. However, there were also many who attempted to use a familiar answer to a different question, namely the routine answer to S1 questions about why calculations of sample mean and variance were not exact: "you don't know the exact data values, only the ranges". Others said "it's only approximately a normal", even though it was clearly stated in the question that the distribution was normal.	
		Total	7		
2		$\begin{aligned} & \frac{150-\mu}{\sigma}=2.00 \\ & \frac{143-\mu}{\sigma}=-1.5 \end{aligned}$ Solve to get $\mu=146, \sigma=2$	M1 A1 B1 B M1 M	Standardise with σ, μ at least once, ignore $c c, \sqrt{ }$ errors, equate to z Both LHS and signs of RHS correct Both z-values correct to 3 SF Correct method for solution $\mu \in[145.95,146.05) \mathrm{www}$ $\mu \in[1.995,2.005) \text { or } \mu^{2}=4 \mathrm{www}$ Examiner's Comments A very confident start to the paper by many. Fully correct answers were common, though inevitably there were some who made sign errors or who failed to use the tables in reverse.	z not used, e.g. equated to 0.0228 and 0.9332 or 0.5092 and 0.8246: max MOM1 One z, one not: M1A0B0 Withhold if elimination done wrongly $\sqrt{ } \sigma$ or σ^{2} : can get M1A0B1M1A1A0 cc: M1A0B1M1A0A0
		Total	6		

	b	$\begin{aligned} & \frac{1.5 \mu-\mu}{\mu / 3} \\ & =\frac{3}{2} \\ & \mathrm{P}(\mathrm{X}>1.5 \mu)=0.0668 \text { or } 0.67 \text { (2 sf) } \end{aligned}$	A1 (AO 1.1) A1 (AO 1.1)	$\frac{4.5 \sigma-3 \sigma}{\sigma}$ Let $\mu=1 ; \mathrm{N}\left(1, \frac{1}{9}\right) \mathrm{M} 1$$\|$SCg) $X=\frac{3}{2}$ AO $\mathrm{P}\left(X>\frac{3}{2}\right)=0.067$ A 1 Examiner's Comments Many candidates chose a value for μ, without justification. These could score two out of the three marks. Many candidates used a standard deviation of $\frac{\mu^{2}}{9}$ and so found that μ did not cancel out. Some could not handle the simple algebra involved in substituting $X=1.5 \mu$ into $\frac{X-\mu}{\frac{\mu}{3}}$	
		Total	8		
10	a	DR $N(450 \times 0.15,450 \times 0.15 \times 0.85)$ or $N(67.5,57.375)$ oe $\mathrm{P}(Y>\mu+\sigma) \approx \frac{1}{6} \quad \Phi^{-1}\left(\frac{1}{6}\right)=0.9674$	$\begin{gathered} \text { M1 (AO } \\ 3.1 \mathrm{~b}) \end{gathered}$	seen or implied $\mathrm{B}(450,0.15)$ with T \& I method using \geq one of $74,75,76,61,60$, 59 $\mathrm{P}(Y<a)=\frac{5}{6}$ $\mathrm{P}(X>74)=0.177$	

(
(

	$\mathrm{P}(X=r) \leq \mathrm{P}(X=r+1)$ for $r \leq 6$ Hence most likely value is r is 6 or 7 (ii) $\frac{\mathrm{P}(X=6)}{\mathrm{P}(X=7)}=\frac{17(6+1)}{3(50-6)}=0.902<1$ Most likely value is 7		$\begin{aligned} & \operatorname{or} P(X=6)=0.142 \& P(X \\ & =7)=0.157 \end{aligned}$ indep, but dep on some reasonable explanation Examiner's Comments Almost no candidates gave a correct solutio used trial and improvement, but did not con were required). Some rounded their figure o any marks.	NOT 6.65 rounds to 7 BOBO No expl'n: BOBO n based on their answer to part (c)(i). Some sider enough values of X. (At least $X=6$ and 7 f 6.65 from part (c)(i) to 7 . This did not score	
	Total	12			
11	$a \left\lvert\, \begin{aligned} & \frac{100}{500} \times 300 \\ & =60(\text { days }) \end{aligned}\right.$		or $20 \mathrm{~cm}^{2}$ or other units $\begin{array}{\|l\|l\|} \hline \text { or } & \frac{4}{20} \times 300 \\ \hline \end{array}$ or equivalent	May be implied	
	$\frac{3 \times 15+5 \times 25+1 \times 15}{500} \times 300$ $=111$	M1 (AO2.1) M1 (AO1.1) A1 (AO1.1) [3]	M1 for denom \& one term in num M1 M1 for correct $\times 300$	oe in other units	

	c	Frequencies: 30, 90, 75, 45, 60	M1 (AO3.1a) A1 (AO1.1) [2]	Allow multiples of these correctly obtain 3275		
	d	$\mathrm{P}(4000<x<6000) \times 300$ $=0.2419 \times 300=72.57 \text { so } 73 \text { days }$	M1 (AO3.4) A1 (AO1.1) [2]	Attempted, using N(3275, 1060²) BC accept truncation to 72 days		
	e	$3270+2 \times 1060=5395$ In histogram, well over 2.5% of values are above 5395 , so model not a good fit	$\begin{gathered} \mathrm{B} 1 \text { (AO3.4) } \\ \text { E1 } \\ \text { (AO2.2b) } \\ {[2]} \end{gathered}$			
		Total	12			
12	a	(i) Xis binomial (ii) Large n	$\begin{gathered} \mathrm{B} 1(\mathrm{AO} 3.3) \\ {[1]} \\ \mathrm{B} 1(\mathrm{AO} \\ {[1.3)} \\ {[1]} \end{gathered}$			
	b	$\begin{aligned} & X \sim \mathrm{~N}\left(\frac{500}{3}, \frac{1250}{9}\right) \\ & \text { e.g. } \mathrm{P}(x<b)=0.7 \\ & b=173 \text { or } 174 \\ & a=\frac{500}{3}-\left((173 \text { or } 174)-\frac{500}{3}\right) \\ & =160 \text { or } 159 \end{aligned}$	B1 (AO 1.2) M1 (AO 3.4) A1 (AO 1.1) M1 (AO 3.4) A1 (AO 1.1) [5]	soi; allow $N(167,139)$ BC or $\mathrm{P}(X<a)=0.3$	Other correct methods score similarly eg $\begin{aligned} & \Phi^{-1}(0.9) \\ & =181 \end{aligned}$ $\Phi^{-1}(0.5)$ $=166$	

