1. a. Given that $|t|=3$, find the possible values of $|2 t-1|$.
b. Solve the inequality $|x-\sqrt{2}|>|x+3 \sqrt{2}|$.
2. i. Give full details of a sequence of two transformations needed to transform the graph of $y=|x|$ to the graph of $y=|2(x+3)|$.
ii. Solve the inequality $|x|>|2(x+3)|$, showing all your working.
3. It is given that $|x+3 a|=5 a$, where a is a positive constant. Find, in terms of a, the possible values of

$$
|x+7 a|-|x-7 a| .
$$

4. (a) If $|x|=3$, find the possible values of $|2 x-1|$.
(b) Find the set of values of x for which $|2 x-1|>x+1$. Give your answer in set notation.
5. (a) Given that $|n|=5$, find the greatest value of $|2 n-3|$, justifying your answer.
(b) Solve the equation $|3 x-6|=|x-6|$.
6. Solve the equation $|2 x-1|=|x+3|$.

Mark scheme

Question		Answer/Indicative content	Marks	Part marks and guidance	
1		Either Attempt solution of linear equation or inequality with signs of x different Obtain critical value $-\sqrt{2}$ Or 1 Attempt to square both sides obtain $x^{2}-2 \sqrt{2} x+2>x^{2}+6 \sqrt{2} x+18$ Or 2 Attempt sketches of $y=\|x-\sqrt{2}\|, y=\|x+3 \sqrt{2}\|$ obtain $x=-\sqrt{2}$ at point of intersection Conclude with inequality of one of the following types: $x<k \sqrt{2}, \quad x>k \sqrt{2}, \quad x<\frac{k}{\sqrt{2}}, \quad x>\frac{k}{\sqrt{2}}$ Obtain $x<-\sqrt{2}$ or $-\sqrt{2}>x_{\text {as }}$ final answer	M1 A1 M1 A1 M1 A1 M1 A1	or equiv (exact or decimal approximation) obtaining at least 3 terms on each side or equiv; or equation; condone $>$ here or equiv any integer k final answer $x<-\frac{2}{\sqrt{2}}$ (or similar unsimplified version) is AO Examiner's Comments It is disappointing to record the fact that only 44% of candidates earned all four marks on this inequality. The more popular approach involved squaring both sides of the inequality. There were some errors, usually involving the square of $3 \sqrt{2}$, but most did square both sides accurately. There were then errors involving signs and the manipulation of the surds. Other candidates dealt with either an equation or inequality (or occasionally four such) where each side was linear in x. Often the critical value $x=-\sqrt{2}$ was reached but it was then a rather haphazard process to reach a conclusion. A neat approach involves careful sketches of $y=\|x-\sqrt{2}\|_{\text {and }}$	

	ii ii ii ii ii	Or Square both sides to obtain $x^{2}>4\left(x^{2}+6 x+9\right)$ Attempt solution of 3-term quadratic eqn / ineq Obtain critical values -6 and -2 Attempt solution of inequality Obtain -6 $<x<-2$	B1 M1 A1 M1 A1 [5]	and nor did candidates offering $x<-2, x$ >-6. or equiv with same guidelines as in Q2(ii) for factorising and formula using table, sketch, ...; implied by correct answer or answer of form $a<x<$ b or of form $x<a, x>b$ (where $a<b$); allow \leq here as final answer; must be <not s; allow ' x >-6 and $x<-2$ '	
		Total	8		
3		Obtain 2a as one value of x Attempt to find second value of x Obtain -8a Substitute each of at most two values of x (involving a) leading to one final answer in each case and showing correct application of modulus signs in at least one case Obtain 4a as final answer Obtain -14a as final answer	B1 M1 A1 M1 A1 A1	By solving equation with signs of x and 5 a different, or by squaring both sides and attempting solution of quadratic equation with three terms And no other values of x Obtained correctly from $x=2 a$ Obtained correctly from $x=-8 a$ Examiner's Comments This question proved to be one of the more demanding requests in the paper and only 38% of the candidates recorded full marks. The slightly unfamiliar nature of the request and the presence of a were presumably factors causing the difficulties. It was also plain	Allow solution leading to $a=\frac{1}{2} x$ (B1) and $a=-\frac{1}{8} x$ (M1A1) If using quadratic formula to solve equation, substitution must be accurate

| | | | | | than those candidates who decided to
 te-write as two linear equation as many
 made sign errors even though most
 started from the correct two equations
 $(2 x-1)= \pm(x+3)$. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Total | 3 | | | |

