1.

The diagram shows the curve with equation

$$
x=(y+4) \ln (2 y+3) .
$$

The curve crosses the x-axis at A and the y-axis at B.
i. Find an expression for $\frac{\mathrm{d} x}{\mathrm{~d} y}$ in terms of y.
ii. Find the gradient of the curve at each of the points A and B, giving each answer correct to 2 decimal places.
2. For each of the following curves, find the gradient at the point with x-coordinate 2.
i. $y=\frac{3 x}{2 x+1}$
ii. $\quad y=\sqrt{4 x^{2}+9}$
3. Find the exact value of the gradient of the curve

$$
y=\sqrt{4 x-7}+\frac{4 x}{2 x+1}
$$

at the point for which $x=4$.
4. The functions f and g are defined for all real values of x by

$$
\mathrm{f}(x)=2 x^{3}+4 \quad \text { and } \quad \mathrm{g}(x)=\sqrt[3]{x-10}
$$

i. Evaluate $\mathrm{f}^{-1}(-50)$.
ii. Show that $\mathrm{fg}(x)=2 x-16$.
iii. Differentiate $\operatorname{gf}(x)$ with respect to x.
5.

Given that $y=4 x^{2} \ln x$, find the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ when $x=\mathrm{e}^{2}$.
6.

Find the equation of the tangent to the curve $y=\frac{5 x+4}{3 x-8}$ at the point , (2, -7).
7. The curves C_{1} and C_{2} have equations

$$
y=\ln (4 x-7)+18 \text { and } y a\left(x^{2}+b\right)^{\frac{1}{2}}
$$

respectively, where a and b are positive constants. The point P lies on both curves and has x coordinate 2. It is given that the gradient of C_{1} at P is equal to the gradient of C_{2} at P. Find the values of a and b.
8. Find the equation of the tangent to the curve

$$
y=3 x^{2}(x+2)^{6}
$$

at the point $(-1,3)$, giving your answer in the form $y=m x+c$.
9.

dy

The equation of a curve is $y=\mathrm{e}^{2 x} \cos x$. Find $\overline{\mathrm{d} x}$ and hence find the coordinates of any stationary points for which $-\pi \leqslant x \leqslant \pi$. Give your answers correct to 3 significant figures.
10. A curve has equation $y=x^{2}+k x-4 x^{-1}$ where k is a constant. Given that the curve has a minimum point
when $x=-2$

- find the value of k,
- show that the curve has a point of inflection which is not a stationary point.

11. The equation of a curve has the form $y=e^{x 2}\left(a x^{2}+b\right)$, where a and b are non-zero
constants. It is given that $\frac{\mathrm{d}^{2} y}{d x^{2}}$ can be expressed in the form $\mathrm{e}^{x 2}\left(c x^{4}+d\right)$, where c and d are non-zero constants. Prove
that $5 a+2 b=0$.
12. In this question you must show detailed reasoning.

The function f is defined for the domain $x \geq 0$ by

$$
f(x)=\left(2 x^{2}-3 x\right) e^{-x}
$$

The diagram shows the curve $y=\mathrm{f}(x)$.
(a) Find the range of f.
(b) The function g is defined for the domain $x \geq k$ by

$$
g(x)=\left(2 x^{2}-3 x\right) e^{-x}
$$

Given that g is a one-one function, state the least possible value of k.
(c) Find the exact area of the shaded region enclosed by the curve and the x-axis.
13. In this question you must show detailed reasoning.

A curve has equation $y=\frac{\ln x}{x}$.
(a) Find the x-coordinate of the point where the curve crosses the x axis.
(b) The points A and B lie on the curve and have x coordinates 2 and 4 . Show that the line $A B$ is parallel to the x-axis.
(c) Find the coordinates of the turning point on the curve.
(d) Determine whether this turning point is a maximum or a minimum.
14.

A function f is defined for $x>0$ by $(x)=\frac{6}{x^{2}+a}$, where a is a positive constant.
(a) Show that f is a decreasing function.
(b) Find, in terms of a, the coordinates of the point of inflection on the curve $y=\mathrm{f}(x)$.

Mark scheme

| Question | | Answer/ndicative content |
| :--- | :--- | :--- | :--- | :--- |

(
(

\begin{tabular}{|c|c|c|c|c|}
\hline \& i
i
i

i

i \& \begin{tabular}{l}
Substitute 2 to obtain $\frac{3}{25}$ ro 0.12

Or Attempt use of product rule for $3 x(2 x+1)^{-1}$

Obtain $3(2 x+1)^{-1}-6 x(2 x+1)^{-2}$ or equiv

Substitute 2 to obtain $\frac{3}{25}$ rr 0.12

 \&

A1

M1

A1

A1

 \&

or simplified equiv but A0 for final $\frac{3}{5^{2}}$

allow sign error; condone no use of chain rule

or simplified equiv

Examiner's Comments

This question was answered well with 75% of candidates earning all three marks. Use of the quotient rule was the usual approach; a few candidates had the terms in the numerator the wrong way round but a more common error, and an avoidable one, was the simplification of $3(2 x+1)-6 x$ in the numerator to give 1 . Some candidates opted for the product rule and were not always successful, failure to apply the chain rule being the principal cause of error.
\end{tabular}

\hline \& ii \& | Differentiate to obtain form $k x\left(4 x^{2}+9\right)^{n}$ |
| :--- |
| Obtain $4 x\left(4 x^{2}+9\right)^{-\frac{1}{2}}$ |
| Substitute 2 to obtain $\frac{8}{5}$ rr 1.6 | \& | M1 |
| :--- |
| A1 |
| A1 | \& | any non-zero constants k and n (including 1 or $\frac{\mathbf{1}}{\mathbf{2}}$ for n) |
| :--- |
| or (unsimplified) equiv |
| or simplified equiv but AO for final $\frac{8}{\sqrt{25}}$ |
| Examiner's Comments |
| This was also answered well, again with 75% of candidates earning three marks. Failure to include a factor x in the derivative was the most common error. In this part, and in part (i), a number of candidates omitted to substitute 2 to find the gradient as requested. |

\hline \& \& Total \& 6 \&

\hline 3 \& \& Differentiate first term to obtain form $k(4 x-7)^{-\frac{1}{2}}$ \& *M1 \& any non-zero constant k, MO if this differentiation is carried out in the midst of some incorrect involved expression

\hline
\end{tabular}

				There were more problems with part (iii). Almost all candidates had the correct expression for $\mathrm{gf}(x)$ but some chose not to carry out the obvious simplification, or simplified ito $\sqrt[3]{-20 x^{3}-40}$ $\left(2 x^{3}+4\right)^{\frac{1}{3}}-10^{\frac{1}{3}} \quad$. to to included a factor $6 x$ instead of $6 x^{2}$, an expression involving $\left(2 x^{3}-6\right)^{-\frac{1}{3}}$ and a final answer not suitably simplified.
		Total	7	
5		Attempt use of product rule to find first derivative Obtain $8 x \ln x+4 x$ Attempt use of correct product rule to find second derivative Obtain $8 \ln x+12$	M1 A1 M1 A1	producing form $\ldots \pm \ldots$ where one term involves $\ln x$ and the other does not or unsimplified equiv with one term involving $\ln x$ or unsimplified equiv Examiner's Comments This question was a suitable introduction to the paper for the majority of candidates, and 77% of them duly earned all five marks. Some provided very concise solutions taking only a few lines of working; the two applications of the product rule were handled without fuss. For many other candidates, solutions were more protracted with each attempt at the product rule needing some work at the side as functions u and v were defined and differentiated. Assembling the parts to form each derivative was prone to error and one that occurred frequently was a failure to include the derivative of $4 x$ in the expression for the second derivative. Sound advice for candidates setting out solutions is to carry out obvious simplifications as the solution progresses. It was surprising that a significant number of candidates did not do this in this question. Having found the first derivative as $8 x \ln x+\frac{4 x^{2}}{x}, \text { they continued }$ by correctly applying the product rule to the first term and then using the quotient

Obtain derivative

