1. The curve $y=(1-x)\left(x^{2}+4 x+k\right)$ has a stationary point when $x=-3$.
i. Find the value of the constant k.
ii. Determine whether the stationary point is a maximum or minimum point.
iii. Given that $y=9 \mathrm{x}-9$ is the equation of the tangent to the curve at the point A, find the coordinates of A.
2. A curve has equation $y=(x+2)^{2}(2 x-3)$.
(i) Sketch the curve, giving the coordinates of all points of intersection with the axes.
(ii) Find an equation of the tangent to the curve at the point where $x=-1$. Give your answer in the form $a x+b y+c=0$.
3.

A curve has equation $y=3 x^{3}-7 x+\frac{2}{x}$.
(i) Verify that the curve has a stationary point when $x=1$.
(ii) Determine the nature of this stationary point.
(iii) The tangent to the curve at this stationary point meets the y-axis at the point Q. Find the coordinates of Q.
4. The curve $y=2 x^{3}-a x^{2}+8 x+2$ passes through the point B where $x=4$.
i. Given that B is a stationary point of the curve, find the value of the constant a.
ii. Determine whether the stationary point B is a maximum point or a minimum point.
iii. Find the x-coordinate of the other stationary point of the curve.
5. The curve $y=4 x^{2}+\frac{a}{x}+5$ has a stationary point. Find the value of the positive constant a given that the y-coordinate of the stationary point is 32 .
6. The curve $y=2 x^{3}+3 x^{2}-k x+4$ has a stationary point where $x=2$.
(a) Determine the value of the constant k.
(b) Determine whether this stationary point is a maximum or a minimum point.
7.

A curve has equation $y=k x^{\frac{3}{2}}$ where k is a constant. The point P on the curve has x coordinate 4. The normal to the curve at P is parallel to the line $2 x+3 y=0$ and meets the x-axis at the point Q. The line $P Q$ is the radius of a circle centre P.
Show that $k=\frac{1}{2}$. Find the equation of the circle.
8. A curve has equation $y=x^{5}-5 x^{4}$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(b) Verify that the curve has a stationary point when $x=4$.
(c) Determine the nature of this stationary point.
9. In this question you must show detailed reasoning.

A curve has equation $y=\mathrm{f}(x)$, where $\mathrm{f}(x)$ is a quadratic polynomial in x. The curve passes through $(0,3)$ and $(4,-13)$. At the point where $x=3$ the gradient of the curve is -2 . Find $f(x)$.
10. A curve has equation $y=\frac{1}{4} x^{4}-x^{3}-2 x^{2}$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Hence sketch the gradient function for the curve.

By considering the x-intercepts of the graph drawn in part (b), determine the
(c) coordinates of the
maximum point on the curve with equation $y=\frac{1}{4} x^{4}-x^{3}-2 x^{2}$.
11. (i) Find the x values of the stationary points of the curve $y=2 x^{4}-x^{2}$.
(ii) Determine, in each case, whether the stationary point is a maximum point or a minimum point.
(iii) Hence state the set of values of x for which curve $2 x^{4}-x^{2}$ is a decreasing function.
12. A curve has equation $y=2 x^{2}+x-10$.
(i) Determine the set of values of x for which the graph of the curve lies above the x-axis.
(ii) The line $3 x+y=c$ is a tangent to the curve. Find the value of c.

The diagram shows a container which consists of a cylinder with a solid base and a hemispherical top. The radius of the cylinder is $r \mathrm{~cm}$ and the height is $h \mathrm{~cm}$. The container is to be made of thin plastic. The volume of the container is $45 \pi \mathrm{~cm}^{3}$.

Show that the surface area of the container, $A \mathrm{~cm}^{2}$, is given by
(a)

$$
A=\frac{5}{3} \pi r^{2}+\frac{90 \pi}{r}
$$

[The volume of a sphere is $V=\frac{4}{3} \pi r^{3}$ and the surface area of a sphere is $S=4 \pi r^{2}$.]
(b) Use calculus to find the minimum surface area of the container, justifying that it is a minimum.
(c) Suggest a reason why the manufacturer would wish to minimise the surface area.
14. A curve has equation $y=a x^{4}+b x^{3}-2 x+3$.
(a) Given that the curve has a stationary point where $x=2$, show that $16 a+6 b=1$.
(b) Given also that this stationary point is a point of inflection, determine the values of a and b.

Mark scheme

	ii	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-6 x-6$ When $x=-3, \frac{d^{2} y}{d x^{2}}$ is positive so min point	M1	Evaluates second derivative at $x=-3$ or other fully correct method No incorrect working seen in this part i.e. if second derivate is evaluated, it must be 12. (Ignore errors in k value) Examiner's Comments Most candidates found the second derivative and considered the sign at $x=-3$; only a few equated to zero in error. As his result was independent of k, this was by far the easiest route to success; candidates considering signs or using other methods rarely made any progress.	Alternate valid methods include: 1) Evaluating gradient at either side of -3 2) Evaluating y at either side of -3 3) Finding other turning point and stating "negative cubic so min before max"
	iii ${ }^{\text {iii }}$ i	$\begin{aligned} & -3 x^{2}-6 x+9=9 \\ & 3 x(x+2)=0 \\ & x=0 \text { or } x=-2 \end{aligned}$ When $x=0, y=-9$ for line $y=-5 \text { for curve }$ When $x=-2, y=-27$ for line $y=-27$ for curve $x=-2, y=-27$	M1	Sets their gradient function from (i) (or from a restart) to 9 Correct x-values One of their x-values substituted into both curve and line / substituted into one and verified to be on the other Conclusion that $x=-2$ is the correct value or Second x-value substituted into both curve and line / verified as above $x=-2, y=-27$ www (Check k correct)	Allow first \mathbf{M} even if k not found but look out for correct answer from wrong working. Alternative Methods: Note: Putting a value into $x^{3}+3 x^{2}-4=0$ (where the line and curve meet) is equivalent If curve equated to line before differentiating: MO AO, can get M1M1 but AO ww Maximum mark 2/5

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& i \& \begin{tabular}{l}
When \(x=1, \frac{d y}{d x}=9-7-2=0\) \\
Therefore a stationary point
\end{tabular} \& \begin{tabular}{l}
M1dep \\
A1
\end{tabular} \& \begin{tabular}{l}
Substitute \(x=1\) into their derivative \\
Correctly obtain zero www and state conclusion AG \\
Examiner's Comments \\
Most candidates approached this very sensibly, differentiating and substituting in \(x=1\) to show the gradient is zero. Many, however, then failed to link this to question and state that this was why there was a stationary point. Some candidates equated their derivative to zero and solved the resulting quartic to show was a solution, again some omitted to explain the significance of this. In all cases, differentiation was generally accurate with some errors with the negative term.
\end{tabular} \& \begin{tabular}{l}
Sets derivative to zero and makes valid attempt to solve resulting quartic M1dep \\
Correctly establishes \(x=1\) as solution and draws clear conclusion A1www
\end{tabular} \\
\hline \& ii \& \[
\begin{aligned}
\& \begin{array}{l}
\frac{d^{2} y}{d x^{2}}= \\
\\
\\
\text { When } x=1, \frac{d^{2} y}{d x^{2}}>0 \text { so minimum }
\end{array}
\end{aligned}
\] \& M1

A1 \& \begin{tabular}{l}
Correct method to find nature of stationary point e.g. substituting $x=1$ into second derivative (at least one term correct from their first derivative in (i))

No incorrect working seen in this part i.e. if second derivate is evaluated, it must be 22.

Examiner's Comments

Most candidates used the second derivative to determine that this was a minimum point, although there were a number of arithmetical errors at this stage. A few candidates found the second derivative to be 22 and then said "increasing", showing apparent confusion over the purpose and meaning of this method. Some candidates tried to find the gradient at either side of $x=1$ but many of these chose $x=0$ as the point to the left; as the function was undefined at this point, this invalidated this approach.

 \&

Alternate valid methods include:

1) Evaluating gradient at either side of 1 ($x>$

2)

3) Evaluating y at 1 and either side of 1 ($x>$

4)

If using alternatives, working must be fully correct to obtain the A mark
\end{tabular}

\hline \& iii \& When $x=1, y=-2$ \& B1 \& Finding $y=-2$ at $x=1$ \&

\hline
\end{tabular}

	iii	(0, -2)	B1	Correct coordinate www Examiner's Comments Less than half of candidates were successful on this part. Many realised the need to find the value of the function when $x=1$ but then struggled to relate this to where the tangent would cut the axis. $Q=-2$ was a common incorrect answer.	
		Total	9		
4		$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2}-2 a x+8 \\ & \text { When } x=4, \frac{\mathrm{~d} y}{\mathrm{~d} x}=104-8 a \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \text { gives } a=13 \end{aligned}$	M1 A1 M1 M1 A1	Attempt to differentiate, at least two non-zero terms correct Fully correct Susstitues $x=4$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ $\mathrm{d} y$ Sets their $d x$ tio 0 . Must be seen Examiner's Comments Differentiating and setting to zero and substituting $x=4$ was the obvious strategy and, although the arithmetic proved troublesome for some, many candidates were able to secure full marks for this part.	These Ms may be awarded in either order
	ii	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=12 x-26$	M1	Correct method to find nature of stationary point e.g. substituting $x=4$ into secondderivative (at least one term correct from their first derivative in (i)) and consider the sign	Alternate valid methods include: 1) Evaluating gradient at either side of $\begin{aligned} & \mathbf{4}\left(x>\frac{1}{3}\right) \\ & \text { e.g. at } 3,-16 \text { at } 5,28 \end{aligned}$

	ii	When $x=4, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}>0$ so minimum	A1	www Examiner's Comments Considering the sign of the second derivative was by far the most common approach for this part and was generally successful. Some candidates equated their second derivative to zero, a confusion that has been common for many sessions.	2) Evaluating $y=-46$ at 4 and either side of $4\left(x>\frac{1}{3}\right)_{\text {e.g. }(3,-37),(5,-33)}$ If using alternatives, working must be fully correct to obtain the A mark
	iii iii	$\begin{aligned} & 6 x^{2}-26 x+8=0 \\ & (3 x-1)(x-4)=0 \\ & x=\frac{1}{3} \end{aligned}$	M1 M1 A1	Sets their derivative to zero Correct method to solve quadratic (appx 1) oe Examiner's Comments A small minority omitted this question, but most candidates were comfortable in returning to their expression in (i), equating to zero and finding the other root. An alternative method not seen before by several markers was to equate the second derivative to the negative of the value found in (ii); this is perfectly valid for cubics and was usually successful.	Could be $(6 x-2)(x-4)=0$ or $(3 x-1)(2 x-8)=0$
		Total	10		
5		$y=4 x^{2}+a x^{-1}+5$ $\frac{d y}{d x}=8 x-a x^{-2}$ At stationary point, $8 x-a x^{-2}=0$	B1 M1 A1 M1	$a x^{-1}$ soi Attempt to differentiate - at least one non-zero term correct Fully correct Sets their derivative to 0	

$$
\begin{aligned}
& a=8 x^{3} \text { oe } \\
& \text { When } a=8 x^{3}, y=32 \\
& 32=4 x^{2}+8 x^{2}+5 \\
& x=\frac{3}{2} \mathbf{0 e} \\
& a=27 \\
& \text { OR } \\
& y=4 x^{2}+a x^{-1}+5 \\
& a=27 \\
& \frac{d y}{d x}=8 x-a x^{-2} \\
& a=27 x-4 x^{3} \\
& 8 x-\left(27 x-4 x^{3}\right) x^{-2}=0 \\
& 32=4 x^{2}+a x^{-1}+5 \\
& 3 \\
& \text { Atationary point, } 8 x-a x^{-2}=0 \\
& x
\end{aligned}
$$

Obtains expression for a in terms of x, or x in terms of $a \mathbf{w w w}$

Substitutes their expression and 32 into equation of the curve to form single variable equation

$$
x=\sqrt{\frac{27}{12}}
$$

$$
\text { Ignore - } \frac{3}{2} \text { given as well. }
$$

Obtains correct value for a. Ignore - 27 given as well.
$a x^{-1}$ soi

Attempt to differentiate - at least one non-zero term correct

Fully correct
Substitutes 32 into equation of the curve to find expression for a
Obtains expression for a in terms of $x \mathbf{w w w}$

Sets derivate to zero and forms single variable equation Obtains correct value for x. Allow

$$
x=\sqrt{\frac{27}{12}} .
$$ Ignore $-\frac{3}{2}$ given as well.

Obtains correct value for a. Ignore - 27 given as well.
$x=\frac{\sqrt[3]{a}}{2}_{o e, a=18 \times 0 e \text { also fine }}$
or expression for ae.g. $a^{\frac{2}{3}}=9$
(

	At $x=2$ there is a stationary point, so $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathbf{0}$ $6 \times 2^{2}+6 \times 2-k=0$ $k=36$	M1 (AO1.1a) A1FT (AO1.1) [5]	Explain the substitution step Substitute $x=2$ in their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ FT their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$		
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=12 x+6$ and $12 \times 2+6(=30)$ $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}>0$ hence minimum	M1 (AO1.1) A1FT (AO2.2a) [2]	Attempt differentiation again and substitute $\mathrm{x}=$ 2, FT their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ Correct conclusion FT www from their $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \text { at } x=2$	OR M1 Attempt to evaluate gradient or y either side A1 Correct values and conclusion M1 For a complete sketch (all intercepts and both turning points identified) A1 for	

		Using $P(4,4)$ and $Q(10,0)$ $P Q^{2}=(10-4)^{2}+(0-4)^{2}$ Circle equation is $(x-4)^{2}+(y-4)^{2}=52$		obtain length $P Q 2$ Accept equivalent forms FT their coordinates for P and Q		
		Total	10			
8	a	$\frac{\mathrm{d} y}{\mathrm{~d} x}=5 x^{4}-20 x^{3} \text { oe }$ $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=20 x^{3}-60 x^{2} \text { oe }$	M1 (AO1.1a) A1(AO1.1) A1FT(AO1.1) [3]	For attempt at differentiation FT their $\frac{\mathrm{d} y}{\mathrm{~d} x}$	Both indices ecrease	
	b	$\begin{aligned} & \qquad \frac{\mathrm{d} y}{\mathrm{~d} x}=5 x^{4}-20 x^{3}=5 \times 4^{4}-20 \times 4^{3} \\ & =0 \text { hence there is a stationary point } \end{aligned}$	M1 (AO1.1) A1(AO2.1) [2]	Substitute into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$		
	c	$\text { When } x=4 \text {, }$ $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=20 x^{3}-60 x^{2}=20 \times 4^{3}-60 \times 4^{2}$ >0 hence the stationary point is a minimum	M1 (AO1.1) E1FT(AO2.2a) [2]	FT from their $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ in part (a)	a)	
		Total	7			

				accuracy mark was withheld if they did not complete the process for all three roots. Alternative successful methods included drawing a sketch of the quartic.		
	iii	$x<-\frac{1}{2}, 0<x<\frac{1}{2}$	B2 [2]	Both regions correct (allow B1 for one correct region) Co ins Examiner's Comments Even those successful in the previous part use their answers to determine where the Many made no serious attempt, and those one region correct because of previous er of x other than regions, and others appear where the curve lay below the x-axis.	done use of \leq ad of $<$. done e.g. $\sqrt{\frac{1}{4}}$ eemed unsure of how to ction was decreasing. at scored often only had Some gave single values to be identifying the region	
		Total	7			
12	i	$\begin{aligned} & (2 x+5)(x-2)=0 \\ & -\frac{5}{2}, 2 \\ & x<-\frac{5}{2}, x>2 \end{aligned}$		Correct method to find roots. See appendix 1. Roots correct Chooses the "outside region" for their roots Allow $" x<-\frac{5}{2}, x>2 "$	NB e.g. $-\frac{5}{2}>x>2$ scores M1A0 if correct	

	$a=-\frac{1}{8} \quad b=\frac{1}{2}$	A1 (AO2.2a) [3]	equations in a and b and attempt to solve for both a and b Both values correct	No follow through for this mark	
	Total	6			

