1. i. The line joining the points $(-2,7)$ and $(-4, p)$ has gradient 4 . Find the value of p.
ii. The line segment joining the points $(-2,7)$ and $(6, q)$ has mid-point $(m, 5)$. Find m and q.
iii. The line segment joining the points $(-2,7)$ and $(d, 3)$ has length $2 \sqrt{13}$. Find the two possible values of d.
2. $\quad A$ is the point $(-2,6)$ and B is the point $(3,-8)$. The line ι is perpendicular to the line $x-3 y+$ $15=0$ and passes through the mid-point of $A B$. Find the equation of ι, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
3. $\quad A$ is the point $(5,7)$ and B is the point $(-1,-5)$.
(i) Find the coordinates of the mid-point of the line segment $A B$.
(ii) Find an equation of the line through A that is perpendicular to the line segment $A B$, giving your answer in the form $a x+b y+c=0$ where a, b and c are integers.
4. The points A and B have coordinates $(2,1)$ and $(5,-3)$ respectively.
i. Find the length of $A B$.
ii. Find an equation of the line through the mid-point of $A B$ which is perpendicular to $A B$, giving your answer in the form $a x+b y+c=0$ where a, b and c are integers.
5. A publisher has to choose the price at which to sell a certain new book. The total profit, $£ t$, that the publisher will make depends on the price, $£ p$. He decides to use a model that includes the following assumptions.

- If the price is low, many copies will be sold, but the profit on each copy sold will be small, and the total profit will be small.
- If the price is high, the profit on each copy sold will be high, but few copies will be sold, and the total profit will be small.

The graphs below show two possible models.

Model A

Model B
(a) Explain how model A is inconsistent with one of the assumptions given above.
(b) Given that the equation of the curve in model B is quadratic, show that this equation is of the form
$t=k\left(12 p-p^{2}\right)$, and find the value of the constant k.
(c) The publisher needs to make a total profit of at least $£ 6400$. Use the equation found in part (b) to find the range of values within which model B suggests that the price of the book must lie.

Comment briefly on how realistic model B may be in the following cases.
(d) $\quad p=0$

- $p=12.1$

6.

The points A and B have coordinates $(1,5)$ and $(4,17)$ respectively. Find the equation of the straight line which passes through the point $(2,8)$ and is perpendicular to $A B$. Give your answer in the form $a x+b y=c$, where a, b and c are constants.
7. In this question you must show detailed reasoning.

Andrea is comparing the prices charged by two different taxi firms.
Firm A charges $£ 20$ for a 5 mile journey and $£ 30$ for a 10 mile journey, and there is a linear relationship between the price and the length of the journey.
Firm B charges a pick-up fee of $£ 3$ and then $£ 2.40$ for each mile travelled.

Find the length of journey for which both firms would charge the same amount.

Mark scheme

Question		Answer/Indicative content	Marks	Part marks and guidance	
1		$\frac{p-7}{-4-^{-} 2} \text { or } \frac{7-p}{-2-^{-} 4}$ $\begin{aligned} & \frac{p-7}{-4-^{-} 2}=4 \text { or } \frac{7-p}{-2-^{-} 4}=4 \\ & p=-1 \end{aligned}$	M1	$\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ of 4 correct) Correct, unsimplified equation Examiner's Comments There was a variety of approaches to this question, many of which worked well, with errors mostly being seen in the subtraction of negative numbers. The most successful method was to find the equation of the line through the given point and then substitute x for the other point. Also very successful was the informal method of counting up or down in 4s. The gradient method needed more care with the negative numbers and was by far the method most prone to error, both in substitution and subsequent calculation.	Alternative method: Equation of line through one of the given points with gradient 4 M1 Substitutes other point into their equation M1 Obtains $p=-1$ (Accept $y=-1$)A1 Note: Other "informal" methods can score full marks provided www
	ii	$\begin{aligned} & \frac{2+6}{2}=m, \frac{7+q}{2}=5 \\ & m=2 \\ & q=3 \end{aligned}$	M1 A1 A1	Correct method (may be implied by one correct coordinate) Examiner's Comments Again informal methods were often more successful than formal ones; use of the mid-point formula was more successful in finding m than q.	Use the same marking principle for candidates who add/ subtract half the difference to an end point or use similar triangles or other valid "informal" methods
	iii iii	$\sqrt{(-2-d)^{2}+(7-3)^{2}}$ $d^{2}+4 d+20=52$	*M1 B1	Correct method to find line length / square of line length using Pythagoras' theorem (at least 3 out of 4 correct) $(2 \sqrt{13})^{2}=52 \text { or } 2 \sqrt{13}=\sqrt{52}$	

(c) OCR 2017.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& negative reciprocal of the gradient of line segment $A B$ was common. Others failed to notice the instruction to use integer coefficients in the final answer. \&

\hline \& \& Total \& 7 \& \&

\hline 3 \& i

i \& | $\left(\frac{5+-1}{2}, \frac{7+-5}{2}\right)$ |
| :--- |
| $(2,1)$ | \& \& | Correct method to find midpoint of line |
| :--- |
| Examiner's Comments |
| This was another area of improvement from previous sessions with very few candidates quoting or using an ncorrect formula to find the mid-point. Thus the vast majority scored both marks. | \& At least 3 out of 4 terms correctly substituted

\hline \& ii \& \[
$$
\begin{aligned}
& \text { Gradient of } \mathrm{AB}=\frac{7--5}{5--1}=2 \\
& \text { Perpendicular gradient }=-\frac{1}{2} \\
& \quad-\frac{1}{2} \\
& y-7=-5) \\
& x+2 y-19=0
\end{aligned}
$$

\] \& | B1 |
| :--- |
| B1ft |
| M1 |
| A1ft |
| A1 | \& | Gradient of AB correctly found as 2 |
| :--- |
| Fully processed their gradient |
| Equation of straight line through A or B, any non-zero gradient |
| Equation of straight line through A only, their perpendicular gradient, in any form |
| Correct equation in given form |
| Examiner's Comments |
| Around two-thirds of candidates provided fully correct solutions to find the equation of the required line. For those who were not successful, errors occurred at all stages. Some failed to find the correct gradient whilst others omitted to find the negative reciprocal to give the gradient of the perpendicular. More commonly, candidates did not read the question carefully and found the equation of the line through the mid-point rather than the required point, or did not give their final answer in the correct form. | \& | i.e. $k(x+2 y-19)$ |
| :--- |
| $=0$ for integer k. |
| Must have "=0". |

\hline \& \& Total \& 7 \& \&

\hline 4 \& i \& \[
$$
\begin{aligned}
& A B=\sqrt{(5-2)^{2}+(-3-1)^{2}} \\
& A B=5
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 | \& | Attempt to use Pythagoras' theorem - 3/4 numbers substituted correctly and attempt to square root |
| :--- |
| Final answer correct, must be fully processed. ± 5 is A 0 . |
| Examiner's Comments |
| Candidates were generally successful in applying | \&

\hline
\end{tabular}

