For a small angle θ , where θ is in radians, show that $1 + \cos \theta - 3\cos^2 \theta \approx -1 + \frac{5}{2}\theta^2$.

[4]

- C

lθ $\frac{3}{4}\pi$ 1 В

The diagram shows triangle *ABC*, in which angle $A = \theta$ radians, angle $B = \frac{3}{4}\pi$ radians and AB = 1 unit.

(a) Use the sine rule to show that
$$AC = \frac{1}{\cos \theta - \sin \theta}$$
. [3]

(b) Given that θ is a small angle, use the result in part (a) to show that

$$AC \approx 1 + p\theta + q\theta^2,$$

where p and q are constants to be determined.

З.

1.

2.

Use small angle approximations to estimate the solution of the equation
$$\frac{\cos \frac{1}{2}\theta}{1+\sin \theta} = 0.825$$
if θ is small enough to neglect terms in θ^3 or above.

END OF QUESTION paper

© OCR 2017.

Α

[4]

Mark scheme

	Question		Answer/Indicative content	Marks	Guidance	
			When θ is small $1 + \cos\theta - 3\cos^2\theta$ $\approx 1 + \left(1 - \frac{1}{2}\theta^2\right) - 3\left(1 - \frac{1}{2}\theta^2\right)^2$	M1(AO 1.1a)	Attempt to use cos $\approx 1 - \frac{1}{2}\theta^{2}$ or $= 1 + \left(1 - \frac{1}{2}\theta^{2} +\right)$	OR M1 Attempt to use $\cos\theta \approx 1 - \frac{1}{2}\theta^2$
1			$=1 + \left(1 - \frac{1}{2}\theta^{2}\right) - 3\left(1 - \theta^{2} + \frac{1}{4}\theta^{4}\right)$ $= 1 + 1 - \frac{1}{2}\theta^{2} - 3 + 3\theta^{2} - \frac{3}{4}\theta^{4}$	M1(AO1.1) E1(AO2.5)	$-3\left(1-\frac{1}{2}\theta^2+\right)^2$ Multiply out	M1 use trigonometric identity 1 + cos θ - 3cos ² θ = 1 + cos θ - $\frac{3}{2}$ - $\frac{3}{2}$ cos 2 θ
			Since θ is small, we can neglect the higher order terms	E1(AO2.1)	For explanation of loss of θ^4 term and consistent use of notation throughout (Working need not be fully correct)	E1 For showing clearly which identity has been used and consistent use of notation throughout E1 AG Clearly obtained www Condone inconsistent
			so $1 + \cos\theta - 3\cos^2\theta \approx -1 + \frac{5}{2}\theta^2$ as required	[4]	AG Clearly obtained www Condone θ^4 term missing without explanation and inconsistent notation	notation
			Total	4		
2		а	$\frac{AC}{\sin\frac{3}{4}\pi} = \frac{1}{\sin\left(\pi - \frac{3}{4}\pi - \theta\right)}$	M1(AO2.1)	Attempt sine rule	

3	$\frac{1 - \frac{1}{8}\theta^2}{1 + \theta} = 0.825$ 0.125\theta + 0.825\theta - 0.175 = 0 \theta = 0.206 or -6.81 (3 sf) Discard -6.81 as not small. \theta = 0.206 (3 sf)	M1 (AO1.1a) A1 (AO1.1) A1 (AO1.1) A1 (AO2.3) [4]	BC Statement needed and A -
	Discard –6.81 as not small. $\theta = 0.206$ (3 st)		Statement needed and $\theta = 0.206$ alone
	Total	4	