1. For a small angle θ, where θ is in radians, show that $1+\cos \theta-3 \cos ^{2} \theta \approx-1+\frac{5}{2} \theta^{2}$.
2.

The diagram shows triangle $A B C$, in which angle $A=\theta$ radians, angle $B=\frac{3}{4} \pi_{\text {radians }}$ and $A B=1$ unit.
(a) Use the sine rule to show that $A C=\frac{1}{\cos \theta-\sin \theta}$.
(b) Given that θ is a small angle, use the result in part (a) to show that

$$
A C \approx 1+p \theta+q \theta^{2}
$$

where p and q are constants to be determined.
3. Use small angle approximations to estimate the solution of the equation
$\frac{\cos \frac{1}{2} \theta}{1+\sin \theta}=0.825$, if θ is small enough to neglect terms in θ^{β} or above.

Mark scheme

Question		Answer/Indicative content	Marks	Guidance	
1		$\begin{aligned} & \text { When } \theta \text { is smal } \\ & \begin{aligned} \approx+\cos \theta-3 \cos ^{2} \theta \\ \approx 1+\left(1-\frac{1}{2} \theta^{2}\right)-3\left(1-\frac{1}{2} \theta^{2}\right)^{2} \end{aligned} \\ & = \\ & =1+\left(1-\frac{1}{2} \theta^{2}\right)-3\left(1-\theta^{2}+\frac{1}{4} \theta^{4}\right) \\ & =1+1-\frac{1}{2} \theta^{2}-3+3 \theta^{2}-\frac{3}{4} \theta^{4} \end{aligned}$ Since θ is small, we can neglect the higher order terms so $1+\cos \theta-3 \cos ^{2} \theta \approx-1+\frac{5}{2} \theta$ as required	M1(AO 1.1a) M1(AO1.1) E1(AO2.5) E1(AO2.1) [4]	Attempt to use cos $\approx 1-\frac{1}{2} \theta^{2}$ or $\begin{aligned} & =1+\left(1-\frac{1}{2} \theta^{2}+\ldots\right) \\ & \\ & \quad-3\left(1-\frac{1}{2} \theta^{2}+\ldots\right)^{2} \end{aligned}$ Multiply out For explanation of loss of θ^{4} term and consistent use of notation throughout (Working need not be fully correct) AG Clearly obtained www Condone θ^{4} term missing without explanation and inconsistent notation	OR M1 Attempt to use $\cos \theta \approx 1-\frac{1}{2} \theta^{2}$ M1 use trigonometric identity $\begin{aligned} & 1+\cos \theta-3 \cos ^{2} \theta \\ & =1+\cos \theta-\frac{3}{2}-\frac{3}{2} \cos 2 \theta \end{aligned}$ E1 For showing clearly which identity has been used and consistent use of notation throughout E1 AG Clearly obtained www Condone inconsistent notation
		Total	4		
2	a	$\frac{A C}{\sin \frac{3}{4} \pi}=\frac{1}{\sin \left(\pi-\frac{3}{4} \pi-\theta\right)}$	M1(AO2.1)	Attempt sine rule	

