1.

The diagram shows triangle $A B C$, with $A C=14 \mathrm{~cm}, B C=10 \mathrm{~cm}$ and angle $A B C=63^{\circ}$.
i. Find angle $C A B$.
ii. Find the length of $A B$.
2.

The diagram shows triangle $A B C$, with $A B=8 \mathrm{~cm}$, angle $B A C=65^{\circ}$ and angle $B C A=30^{\circ}$. The point D is on $A C$ such that $A D=10 \mathrm{~cm}$.
i. Find the area of triangle $A B D$.
ii. Find the length of $B D$.
iii. Find the length of $B C$.
3.

The diagram shows triangle $A B C$, with $A C=8 \mathrm{~cm}$ and angle $C A B=30^{\circ}$.
i. Given that the area of the triangle is $20 \mathrm{~cm}^{2}$, find the length of $A B$.
ii. Find the length of $B C$, giving your answer correct to 3 significant figures.
4. The points P, Q and R have coordinates $(-1,6),(2,10)$ and $(11,1)$ respectively. Find the angle $P R Q$.
5. In this question you must show detailed reasoning.

The diagram shows triangle $A B C$. The angles $C A B$ and $A B C$ are each 45°, and angle $A C B=$ 90°. The points D and E lie on $A C$ and $A B$ respectively, such that $A E=D E=1, D B=2$ and angle $B E D=90^{\circ}$. Angle $E B D=30^{\circ}$ and angle $D B C=15^{\circ}$.
(a)

Show that $B C=\frac{\sqrt{2}+\sqrt{6}}{2}$.
(b) By considering triangle $B C D$, show that $\sin 15^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}$.
6.

The diagram shows triangle $A B C$, with $A B=x \mathrm{~cm}, A C=(x+2) \mathrm{cm}, B C=2 \sqrt{7} \mathrm{~cm}$ and angle $C A B=60^{\circ}$.
(a) Find the value of x.
(b) Find the area of triangle $A B C$, giving your answer in an exact form as simply as
possible.

Mark scheme

Question		Answer/Indicative content \quad Marks		Part marks and guidance	
1	i	$\begin{aligned} & \frac{\sin A}{10}=\frac{\sin 63}{14} \\ & A=39.5^{\circ} \end{aligned}$	M1 A1	Attempt use of correct sine rule Obtain 39.5 ${ }^{\circ}$, or better	Must be correct sine rule, either way up Need to rearrange at least as far as $\sin A=$..., using a valid method Allow M1 even if subsequently evaluated in rads (0.120) Actual answer is 39.52636581... so allow more accurate answer as long as it rounds to 39.53 Examiner's Comments This proved to be a straightforward question, and most candidates used the sine rule accurately to gain full marks.
	ii	$c^{2}=10^{2}+14^{2}-2 \times 10 \times 14 \times \cos 77.5^{\circ} \mathrm{C}=15.3$	M1	Attempt use of correct cosine rule, or equiv, inc attempt at 77.5°	Angle used must be 77.5° or must come from a clear attempt at $180-(63+$ their $A)$. NB Using 102.5° in sine rule will give 15.3, but this is MO. Must be correct formula seen or implied, but allow slip when evaluating eg omission of 2 , incorrect extra 'big bracket' Allow M1 if expression is not square rooted, as long as LHS was intended to be correct ie $c^{2}=\ldots$ or $A B^{2}=\ldots$ Allow M1 even if subsequently evaluated in rad mode Allow any equiv method, including sine rule (as far as $\sin C=$...) or right-angled

© OCR 2017.

© OCR 2017.

	${ }^{i 1}$		A1	Obtain 5.04, or better		11.8 by itself cannot imply M1 Allow if correct formula seen but is then evaluated incorrectly (using ($8^{2}+10^{2}-2 \times 8$ $\times 10) \times \cos 30$ gives 1.86) Allow any equiv method as long as valid use of trig If >3 sf, allow answer rounding to 5.043 with no errors seen Examiner's Comments This part of the question was also very well answered by the majority of candidates, and full marks were very common. The cosine rule was usually quoted correctly, but candidates who are unsure should make use of the formula book. Some candidates were unable to correctly evaluate the expression with additional, incorrect, brackets being used or square rooting being omitted.
		Total	4			
${ }^{4}$		$\begin{aligned} & \text { e.g. }(2-(-1))^{2}+(10-6)^{6} \\ & \begin{aligned} & P Q^{2}=25, Q P^{2}=162, R P^{R}=169 \\ & \begin{aligned} \angle P R Q & =\cos ^{-1} \frac{169+162-25}{2 \times 13 \times \sqrt{162}} \\ & =22.4 \text { to } 3 \mathrm{sf} \end{aligned} \end{aligned} . \end{aligned}$	M1 (AOB.12 A1 (AO1.1) M1 (A01.1) A1 (AO1.1) [4]	Find at least one of $P Q^{2}, Q R^{2}$ or $R P^{2}$ Use cosine rule to find an angle of triangle PQR Accept 3 sf or	or $P Q$, QP or $Q R$ seen	

				better(22.38013503...)			
		Total	4				
5	a	DR $B E=\sqrt{3}_{\text {rom the standard triangle } B D E}$ $\begin{aligned} B C= & A B \cos 45 \\ & =\frac{1+\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{2}+\sqrt{6}}{2} \end{aligned}$	B1(AO 2.2a) M1(AO 2.1) E1(AO 2.2a) [3]	Or $A B=1+\sqrt{3}$ seen oe or Pythagoras' theorem AG		for cimal ust be en $+\sqrt{3}$ $\sqrt{2}$ ust be en.	
	b	$\begin{aligned} & \begin{array}{l} A C=C D+\sqrt{2} \\ \text { so } C D= \\ =\frac{\sqrt{2}+\sqrt{6}}{2}-\sqrt{2} \\ = \\ \text { sin15 } \\ =\frac{C D}{B D}=\frac{\sqrt{6}-\sqrt{2}}{2} \end{array}+2=\frac{\sqrt{6}-\sqrt{2}}{4} \end{aligned}$	$\begin{gathered} \mathrm{B} 1(\mathrm{AO} \\ 2.4) \\ \text { M1(AO } \\ 2.1) \\ \text { A1(AO } \\ \text { 2.2a) } \\ \text { [3] } \end{gathered}$	State or imply that $B C=A C$ and state $A C=C D+$ Obtain expression for CD, may be unsimplified Obtain expression for $\sin 15$ and simplify to answer given		MO if decimals seen SC1 for showing using addition formula	
		Total	6				
6	i	$\begin{aligned} & (2 \sqrt{7})^{2}=x^{2}+(x+2)^{2}-2 x(x+2) \cos 60 \\ & x^{2}+2 x-24=0 \\ & (x+6)(x-4)=0 \\ & x=4 \end{aligned}$	M1	Attempt use of correct cosine rule		st be empt to correct but w BOD lack of ckets eg	

© OCR 2017.

