1. i. Solve the simultaneous equations

$$y = 2x^2 - 3x - 5$$
, $10x + 2y + 11 = 0$.

[5]

ii. What can you deduce from the answer to part (i) about the curve $y = 2x^2 - 3x - 5$ and the line 10x + 2y + 11 = 0?

[1]

[5]

2. Solve the simultaneous equations

$$2x + y - 5 = 0, \qquad x^2 - y^2 = 3.$$

- 3. Solve the simultaneous equations $x^2 + y^2 = 34, \quad 3x y + 4 = 0.$ [5]
- 4. Solve the simultaneous equations.

$$x^{2} + 8x + y^{2} = 84$$

x - y = 10 [4]

5. Solve the simultaneous equations y = 2x and $y = x^2 + 2x - 4$. © OCR 2017. Page 1 of 7 6. Solve the simultaneous equations $y = x^2 - 6x$, 2y + x - 6 = 0.

END OF QUESTION paper

[5]

Mark scheme

0	Questio	n	Answer/Indicative content	Marks	Part marks and	guidance
1		i	$2x^2 - 3x - 5 = \frac{-10x - 11}{2}$	*M1	Substitute for x/y or attempt to get an equation in 1 variable only	or $10x + 2(2x^2 - 3x - 5) + 11 = 0$
		i	$4x^2 + 4x + 1 = 0$	A1	Obtain correct 3 term quadratic – could be a multiple e.g. $2x^2 + 2x + 0.5 = 0$	If x is eliminated, expect $k(8y^2 + 48y + 72) = 0$
		i	(2x + 1)(2x + 1) = 0	DM1	Correct method to solve resulting 3 term quadratic	
		i	$x = -\frac{1}{2}$	A1		$x = -rac{1}{2}$ spotted
		i	<i>y</i> = -3	A1	Examiner's Comments Almost all candidates recognised the need to eliminate a variable and chose to eliminate <i>y</i> . There were errors in finding the quadratic, but most then went on to factorise correctly and find the values of both variables; forgetting to find <i>y</i> is now comparatively rare. A large number of candidates, however, found the substitution of $\mathbf{x} = -\frac{1}{2}$ to find <i>y</i> difficult and many lost this mark.	B1 for <i>x</i> value, B1 for y value B1 justifying only one root
		ï	Line is a tangent to the curve	B1√	Must be consistent with their answers to their quadratic in (i). 1 repeated root – indicates one point. Accept tangent, meet at, intersect, touch etc. but do not accept cross 2 roots – indicates meet at two points 0 roots – indicates do not meet. Do not accept "do not cross" Examiner's Comments One acceptable response was that one root implied that the line was a tangent to the curve. The question did not specify that a geometrical comment was required and so "meeting at one point" was another acceptable response. Candidates who made an error in part (i) were rewarded for a consistent conclusion relating to their roots. Use of the word "cross" is unhelpful; for example, in the case where there are no	Follow through from their solution to (i)

				solutions saying "they do not cross" does not exclude the possibility that they touch. A number of candidates were using stock phrases irrespective of their answer to (i), such as "they are perpendicular" or "it just touches the <i>x</i> - axis" or stating the line was a tangent when they had found two different roots; these of course gained no credit.	
		Total	6		
2		$x^2 - (5 - 2x)^2 = 3$	M1*	Substitute for x/y or valid attempt to eliminate one of the variables	If γ eliminated:
		$3x^2 - 20x + 28 = 0$	A1	Three term quadratic in solvable form	$3y^{2} + 10y - 13 = 0$ (3y + 13)(x - 1) = 0
		(3x - 14)(x - 2) = 0	M1dep	Correct method to solve three term quadratic – see appendix 1	Spotted solutions: If M*0
		$x = \frac{14}{3}, x = 2$ $y = -\frac{13}{3}, y = 1$	A1	Both <i>x</i> values correct	SC B1 $x = 2, y = 1$ www SC B1 $x = \frac{14}{3}, y = -\frac{13}{3}$ www
			A1	Both y values correct. Allow 1 A mark for one correct pair of x and y from correct factorisation. Image: Correct pair of x and y from correct pair of y and so form a quadratic in x as the first step in solving this pair of simultaneous equations. Sign errors meant that not all candidates obtained the correct quadratic and even those who did found it difficult to factorise. Attempts to use the formula were also hampered by the relatively large number 28 and so many candidates got no further. Those who did succeed usually remembered to substitute to find y, but sign errors were again quite common in this part. Nonetheless, a significant proportion of candidates produced full, clear and accurate solutions.	Must show on both line and curve (Can then get 5/5 if both found www and exactly two solutions justified)
		Total	5		
3		$x^2 + (3x + 4)^2 = 34$	M1*	Substitute for x/y or valid attempt to eliminate one of the variables	If <i>x</i> eliminated:

		$10x^{2} + 24x - 18 = 0$ $5x^{2} + 12x - 9 = 0$	A1	Correct three term quadratic i form	in solvable	$10y^2 - 8y + 290 = 0$ $5y^2 - 4y + 145 = 0$
		(5x-3)(x+3) = 0	M1dep*	Attempt to solve resulting three quadratic	ee term	(5y - 29)(y + 5) = 0
		$x = \frac{3}{5}, x = -3$	A1	Correct <i>x</i> values		Award A1 A0 for one pair correctly found from correct quadratic
		$y = \frac{29}{5}, y = -5$	A1	Correct y values		Spotted solutions: If MO DMO $x = \frac{3}{5}$, $y = \frac{29}{5}$, www SC B1 $x = -3$, $y = -5$ www Must show on both line and curve (Can then get 5/5 if both found www and exactly two solutions justified) Examiner's Comments This familiar question was very well done with many candidates scoring full marks. The vast majority of candidates opted to substitute for y and so form a quadratic in <i>x</i> . There were some errors, for example $16 - 34 = 22$, but most substitutions were very good and clearly shown. As in most recent sessions, candidates remain more likely to factorise, accurately, rather than depend on the quadratic formula. This usually resulted in the correct values of <i>x</i> , but a significant number of accuracy errors then occurred when substituting for <i>y</i> . Forgetting to work out the second variable was not entirely absent.
		Total	5			
		$x^2 + 8x + (x - 10)^2 = 84$	M1(AO1.1a)	linear I equation into	OR M1 (y + 10) ² +	
4		$2x^2 - 12x + 16 = 0$ x = 2, x = 4	A1(A01.1b) A1(A01.1) A1(A01.1)	Correctly simplified	$8(y' + 10) + y^2 =$	
		x = 2 and $y = -8x = 4$ and $y = -6$	[4]	BC, but allow	84 A1 2 <i>y</i> ²	

				method $+ 28y$ Values should $+ 96 =$ be paired0correctlyA1 $y =$ $-8, y=$ -6
		Total	4	
5		$2x = x^{2} + 2x - 4$ $x^{2} - 4 = 0$ x = 2 or -2 x = 2 and y = 4 or $x = -2 and y = -4$	M1(AO1.1a) A1(AO1.1) A1(AO1.1) A1(AO1.1) [4]	or $x = 2, y$ $= 4 \text{ or}$ $x = -2, y$ Both x's or one pair x, y $x = -2, y$ $= -4$ Must be pairedAllow (2, 4) and $(-2, -4)$ Must be paired
		Total	4	
		$2(x^2 - 6x) + x - 6 = 0$	M1* A1	SubstituteIf xfor x/y toeliminated:eliminate $y = (6 - 2y)^2 - 6(6 - 2y)^2 - 6(6 - 2y)^2$
		$2x^2 - 11x - 6 = 0$ $(2x + 1)(x - 6) = 0$	M1*dep	Correct $4y^2 - 13y$ 2/3-term = 0 quadratic in solvable $y(4y - 13)$
6		$x = -\frac{1}{2}, x = 6$ $y = \frac{13}{4}, y = 0$	A1 A1	form= 0Attempt to solve resulting quadratic.Spotted solutions:SeeIf MO DMO appendixappendixSC B1 correct1.One correctx values correctpair www Second

nns d) number neous x th the ng in an ariable action the	from ex correctly tw	5		Total		
---	-------------------------	---	--	-------	--	--