1. A sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{1}=7 \text { and } u_{n+1}=u_{n}+4 \text { for } n \geqslant 1 \text {. }
$$

i. Show that $u_{17}=71$.
ii. Show that $\sum_{n=1}^{35} u_{n}=\sum_{n=36}^{50} u_{n}$.
2. A sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by $u_{n}=3 n-1$, for $n \geqslant 1$.
i. Find the values of u_{1}, u_{2} and u_{3}.
ii. Find $\sum_{n=1}^{40} u_{n}$.
3. In an arithmetic progression the first term is 5 and the common difference is 3 . The nth term of the progression is denoted by u_{n}.
i. Find the value of u_{20}.
ii. Show that $\sum_{n=10}^{20} u_{n}=517$.
iii. Find the value of N such that $\sum_{n=N}^{2 N} u_{n}=2750$.
4. In this question you must show detailed reasoning.

A sequence S has terms $u_{1}, u_{2}, u_{3} \ldots$ defined by $u_{1}=500$ and $u_{n+1}=0.8 u_{n}$.
(a) State whether S is an arithmetic sequence or a geometric sequence, giving a
reason for your answer.
(b) Find u_{20}.
(c) Find $\sum_{n=1}^{20} u_{n}$.
(d) Given that $\sum_{n=k}^{\infty} u_{n}=1024$, find the value of k.

Mark scheme

						Examiner's Comments Most candidates gained the first two marks with ease, using one of the two relevant formulae to sum the first thirty-five terms. The next two marks proved a little more problematical for many and they struggled to identify an appropriate strategy, with a mismatch between the values used for the number of terms and the first term. Those who attempted the sum of fifty terms from which they subtracted the sum of the first thirtyfive terms were usually successful, and the working suggested that some were aided in their attempts by the given answer. A number of candidates attempted to sum from the 36th to the 50th term, but many struggled to identify that they were summing fifteen terms, and errors were also made in determining the first term. One of the more successful methods was to find values for the 36th and the 50th terms and then use $\frac{1}{2} n(a+l)$. Whilst most candidates gained at least two marks on this question, there were a number who seemed unfamiliar with sigma notation, or used incorrect values for a and/or n despite the hint given in part (i).
			Total	6		
2		i	2, 5, 8	B1	Obtain at least one correct value Obtain all three correct values Examiner's Comments Virtually all of the candidates were able to write down the required terms, gaining the two marks available. A few candidates mistakenly treated it as a recursive definition rather than an nth term definition.	Either stated explicitly or as part of a longer list, but must be in correct position eg -1, 2, 5 is B0 Ignore any subsequent values, if given

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \& ii \& \[
S_{40}=\frac{40}{2}(2 \times 2+39 \times 3)
\]
\[
=2420
\] \& \begin{tabular}{l}
B1* \\
M1d*
\end{tabular} \& \begin{tabular}{l}
Identify AP with \(a=2, d=3\) \\
Attempt to sum first 40 terms of the AP \\
Obtain 2420 \\
Examiner's Comments \\
Despite having written out the first three terms of the sequence in part (i), a number of candidates struggled to identify the correct values of \(a\) and \(d\), with \(a=1\) being the most common error. The sight of the sigma sign resulted in other candidates attempting to use one of the summation formulae, but this was only occasionally done correctly. However, the majority of candidates could quote the relevant formula, substitute the correct values and obtain the required final answer to gain all of the marks available.
\end{tabular} \& \begin{tabular}{l}
Could be stated, listing of further terms linked by '+' sign or by recognisable attempt at any formula for AP including attempt at \(u_{40}\) \\
Must use correct formula, with \(a=2\) and \(d=3\) \\
If using \(1 / 2 n(a+\lambda)\) then must be valid attempt at / \\
Could use \(3 \Sigma n-\Sigma 1\), but MO for \(3 \Sigma\) \(n-1\) \\
If summing manually then no need to see all middle terms explicitly as long as intention is clear
\end{tabular} \\
\hline \& \& \& Total \& 5 \& \& \\
\hline 3 \& \& \[
1 \mathrm{i}
\] \& \[
u_{20}=5+19 \times 3
\]
\[
=62
\] \& M1

A1 \& \begin{tabular}{l}
Attempt uzo

Obtain 62

Examiner's Comments

This question was invariably correct, with most candidates using the formula for the nth term of an AP. Other methods included firstly generating an nth term expression for the sequence, and some just resorted to manually listing the terms.

 \&

Must be using correct formula, with a $=5$ and $d=3$

Could use $u_{n}=3 n+2$

Could attempt to list terms

If listing terms then need to indicate that 62 is the required answer
\end{tabular}

\hline
\end{tabular}

(C) OCR 2017.

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

					Obtain k Ob $=5$		
Total	10						

