1. i. By sketching the curves $y=\ln x$ and $y=8-2 x^{2}$ on a single diagram, show that the equation

$$
\ln x=8-2 x^{2}
$$

has exactly one real root.
ii. Explain how your diagram shows that the root is between 1 and 2 .
iii. Use the iterative formula

$$
x_{n+1}=\sqrt{4-\frac{1}{2} \ln x_{n}}
$$

with a suitable starting value, to find the root. Show all your working and give the root correct to 3 decimal places.
iv. The curves $y=\ln x$ and $y=8-2 x^{2}$ are each translated by 2 units in the positive x-direction and then stretched by scale factor 4 in the y-direction. Find the coordinates of the point where the new curves intersect, giving each coordinate correct to 2 decimal places.
2.

The diagram shows the curve $y=\mathrm{f}(x)$, where f is the function defined for all real values of x by

$$
f(x)=3+4 e^{-x}
$$

i. State the range of f.
ii. Find an expression for $f^{-1}(x)$, and state the domain and range of f^{-1}.
iii. The straight line $y=x$ meets the curve $y=\mathrm{f}(x)$ at the point P. By using an iterative process based on the equation $x=\mathrm{f}(x)$, with a starting value of 3 , find the coordinates of the point P. Show all your working and give each coordinate correct to 3 decimal places.
iv. How is the point Prelated to the curves $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$?
3.

The diagram shows the curve $y=x^{4}-8 x$.
i. By sketching a second curve on the copy of the diagram, show that the equation

$$
x^{4}+x^{2}-8 x-9=0
$$

has two real roots. State the equation of the second curve.
[2]
ii. The larger root of the equation $x^{4}+x^{2}-8 x-9=0$ is denoted by a.
a. Show by calculation that $2.1<a<2.2$.
b. Use an iterative process based on the equation

$$
x=\sqrt[4]{9+8 x-x^{2}}
$$

with a suitable starting value, to find a correct to 3 decimal places. Give the result of each step of the iterative process.
4.

The diagram shows the curve $y=8 \sin ^{-1}\left(x-\frac{3}{2}\right)$. The end-points A and B of the curve have coordinates $(a,-4 \pi)$ and $(b, 4 \pi)$ respectively.
i. State the values of a and b.
ii. It is required to find the root of the equation $8 \sin ^{-1}\left(x-\frac{3}{2}\right)=x$.
a. Show by calculation that the root lies between 1.7 and 1.8.
b. In order to find the root, the iterative formula

$$
x_{n+1}=P+\sin \left(q x_{n}\right),
$$

with a suitable starting value, is to be used. Determine the values of the constants p and q and hence find the root correct to 4 significant figures. Show the result of each step of the iteration process.
5. i. By sketching the curves $y=x(2 x+5)$ and $y=\cos ^{-1} x$ (where y is in radians) in a single diagram, show that the equation $x(2 x+5)=\cos ^{-1} x$ has exactly one real root.
ii. Use the iterative formula

$$
x_{n+1}=\frac{\cos ^{-1} x_{n}}{2 x_{n}+5} \text { with } x_{1}=0.25
$$

to find the root correct to 3 significant figures. Show the result of each iteration correct to at least 4 significant figures.
iii. Two new curves are obtained by transforming each of the curves $y=x(2 x+5)$ and $y=$ $\cos ^{-1} x$ by the pair of transformations:
reflection in the x-axis followed by reflection in the y-axis.

State an equation of each of the new curves and determine the coordinates of their point of intersection, giving each coordinate correct to 3 significant figures.
6. The equation $x^{3}-x^{2}-5 x+10=0$ has exactly one real root a.
(a) Show that the Newton-Raphson iterative formula for finding this root can be written as

$$
x_{n+1}=\frac{2 x_{n}^{3}-x_{n}^{2}-10}{3 x_{n}^{2}-2 x_{n}-5}
$$

(b) Apply the iterative formula in part (a) with initial value $x_{1}=-3$ to find x_{2}, x_{3}, x_{4} correct to 4 significant figures.
(c) Use a change of sign method to show that $a=-2.533$ is correct to 4 significant figures.
(d) Explain why the Newton-Raphson method with initial value $x_{1}=-1$ would not converge to a.
7.
(a) By sketching the graphs of $y=\frac{5}{x^{2}}$ and $y=|2-4 x|$ on a single diagram, show that the equation

$$
\begin{equation*}
\frac{5}{x^{2}}=|2-4 x| \tag{A}
\end{equation*}
$$

has exactly two real roots.
(b) Show that the positive root a of equation (A) satisfies the equation $\mathrm{f}(x)=0$, where

$$
f(x)=4 x^{3}-2 x^{2}-5
$$

(c) Hence show that a Newton-Raphson iterative formula for finding a can be written in the form

$$
x_{n+1}=\frac{8 x_{n}^{3}-2 x_{n}^{2}+5}{12 x_{n}^{2}-4 x_{n}}
$$

(d) Use this iterative formula, with initial value $x_{1}=1$, to find the value of a correct to 3 decimal places. Show the result of each iteration.

A student claims that the iterative formula from part (c) can be used to find the negative root of equation (A) provided that a suitable initial value is chosen.
(e) Explain why the student's claim is incorrect.
8. The equation $x^{3}-x-2=0$ has exactly one real root a.
(a) Use the iterative formula $x_{n+1}=\sqrt[3]{x_{n}+2}$ with $x_{1}=1$ to find a correct to 4 significant figures, showing the result of each iteration.
(b)

An alternative iterative formula is $x_{n+1}=F\left(x_{n}\right)$, where $F\left(x_{n}\right)=\frac{x_{n}+2}{x_{n}^{2}}$. By considering F
[3] ' (a), explain why this iterative process will not converge to a.
9.

The diagram shows the graph of $\mathrm{f}(x)=\ln (3 x+1)-x$, which has a stationary point at $x=a$. A student wishes to find the non-zero root β of the equation $\ln (3 x+1)-x=0$ using the Newton-Raphson method.
(a) (i) Determine the value of a.
(ii) Explain why the Newton-Raphson method will fail if a is used as the initial value.
(b) Show that the Newton-Raphson iterative formula for finding β can be written as

$$
x_{n+1}=\frac{3 x_{n}-\left(3 x_{n}+1\right) \ln \left(3 x_{n}+1\right)}{2-3 x_{n}}
$$

(c) Apply the iterative formula in part (b) with initial value $x_{1}=1$ to find the value of β correct to 5 significant figures. You should show the result of each iteration.
(d) Use a change of sign method to verify that the value of β found in part (c) is correct to 5 significant figures.
10.

The diagram shows the graph of $y=-\tan ^{-1}\left(\frac{1}{2} x-\frac{1}{3} \pi\right)$, which crosses the x-axis at the point A and the y-axis at the point B.
(a) Determine the coordinates of the points A and B.
(b) Give full details of a sequence of three geometrical transformations which transform the graph of

$$
y=\tan ^{-1} x \text { to the graph of } y=-\tan ^{-1}\left(\frac{1}{2} x-\frac{1}{3} \pi\right) .
$$

The equation $x=-\tan ^{-1}\left(\frac{1}{2} x-\frac{1}{3} \pi\right)$ has only one root.
(c) Show by calculation that this root lies between $x=0$ and $x=1$.
(d)

Use the iterative formula $x_{n+1}=-\tan ^{-1}\left(\frac{1}{2} x_{n}-\frac{1}{3} \pi\right)$, with a suitable starting value, to find the root correct to 3 significant figures. Show the result of each iteration.

Using the diagram below, show how the iterative process converges to the root.

11.

The functions $f(x)$ and $g(x)$ are defined for $x \geq 0$ by $f(x)=\frac{x}{x^{2}+3}$ and $g(x)=e^{-2 x}$. The diagram shows the curves $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$. The equation $\mathrm{f}(x)=\mathrm{g}(x)$ has exactly one real root a.
(a) Show that a satisfies the equation $\mathrm{h}(x)=0$, where $\mathrm{h}(x)=x^{2}+3-x \mathrm{e}^{2 x}$.

Hence show that a Newton-Raphson iterative formula for finding a can be written in the form
(b)

$$
\begin{equation*}
x_{n+1}=\frac{x_{n}^{2}\left(1-2 \mathrm{e}^{2 x_{n}}\right)-3}{2 x_{n}-\left(1+2 x_{n}\right) \mathrm{e}^{2 x_{n}} .} \tag{5}
\end{equation*}
$$

Use this iterative formula, with a suitable initial value, to find a correct to 3 decimal (c) places. Show the result of each iteration.
(d) In this question you must show detailed reasoning.

Find the exact value of x for which $\operatorname{fg}(x)=\frac{2}{13}$.

Mark scheme

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& Candidates were required here merely to mention the fact that the curves cross the \(x\)-axis at 1 and 2 and that the \(x\)-coordinate of the point of intersection lies between these two values. Many managed this but there were some lengthy and convoluted attempts as well. Candidates embarking on a sign change routine did not earn the mark. \& \\
\hline \& \begin{tabular}{l}
iii \\
iii \\
iii \\
iii
\end{tabular} \& \begin{tabular}{l}
Obtain correct first iterate \\
Show correct iterative process \\
Obtain at least 3 correct iterates \\
Conclude with 1.917
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
A1
\end{tabular} \& \begin{tabular}{l}
to at least 3 dp (except in the case of starting value 1 leading to 2) \\
involving at least 3 iterates in all; may be implied by plausible converging values \\
allowing recovery after error; iterates given to at least 3 dp; values may be rounded or truncated \\
answer required to exactly 3 dp; answer only with no evidence of process is \(0 / 4\) \\
Examiner's Comments \\
Candidates had no difficulty with this part and 88\% of them duly earned all four marks.
\end{tabular} \& \\
\hline \& iv \& \[
\begin{gathered}
1 \rightarrow 2 \rightarrow 1.91139 \rightarrow 1.91731 \ldots \rightarrow 1.91690 \ldots \rightarrow 1.91693 \ldots \\
1.5 \rightarrow 1.94865 \ldots \rightarrow 1.91479 \ldots \rightarrow 1.91707 \ldots \rightarrow 1.91692 \ldots \\
2 \rightarrow 1.91139 \ldots \rightarrow 1.91731 \ldots \rightarrow 1.91690 \ldots \rightarrow 1.91693 \ldots
\end{gathered}
\] \& \& \& \\
\hline \& \(v\)

v \& | Obtain 3.92 or greater accuracy |
| :--- |
| Attempt $4 \times \ln ($ part (iii) answer) |
| Obtain y-coordinate 2.60 | \& | B1/ |
| :--- |
| M1 |
| A1 | \& | following their answer to part (iii) |
| :--- |
| value required to exactly 2 dp (so AO for 2.6 and 2.603) |
| Examiner's Comments |
| This request proved much more challenging and 45% of candidates earned no marks. There were many attempts that involved finding the equations of the transformed curves; candidates seemed to hope that equating these would somehow reveal the ordinates of the new point of | \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \& iii \& \begin{tabular}{l}
Show correct iteration process \\
Obtain at least 3 correct iterates \\
Obtain (3.168, 3.168)
\end{tabular} \& M1 \& \begin{tabular}{l}
showing at least 3 iterates in all; may be implied by plausible converging values; M1available if based on equation with just a slip in \(x=f(x)\) but MO if based on clearly different equation \\
allowing recovery after error; iterates to only 3 dp acceptable; values may be rounded or truncated \\
each coordinate required to exactly 3 dp ; award AO if fewer than 4 iterates shown; part (iii) consisting of answer only gets 0 out of 4
\[
[3 \rightarrow 3.199148 . . \rightarrow 3.163187 . . \rightarrow 3.169162 . . \rightarrow 3.168155 . . \rightarrow
\]
3.168324..] \\
Examiner's Comments \\
As in previous series, the iteration was usually carried out efficiently and accurately. However many candidates were guilty of not reading the question carefully and concluded with only \(x=3.168\), thereby losing the final mark.
\end{tabular} \\
\hline \& iv \& State \(P\) is point where the curves meet \& B1 \& \begin{tabular}{l}
or equiv \\
Examiner's Comments \\
Most candidates did earn the mark but, in many cases, more information was provided than was necessary. There were many references to reflection or to the curves being symmetrical about the line \(y=x\) but, provided that \(P\) was recognised as the point of intersection of the two curves, the mark was awarded.
\end{tabular} \\
\hline \& \& Total \& 10 \& \\
\hline 3 \& i \& \begin{tabular}{l}
Draw inverted parabola roughly symmetrical about the \(y\)-axis and with maximum point more or less on \(y\)-axis \\
State \(y=9-x^{2}\) and indicate two intersections by marks on diagram or written reference to two intersections
\end{tabular} \& M1

A1 \& | drawing enough of the parabola that two intersections occur, ignoring their locations at this stage |
| :--- |
| now needs second curve drawn so that right-hand intersection occurs in first quadrant |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& Total \& 8 \& \& \\
\hline 4 \& i \& \begin{tabular}{l}
State or clearly imply \(a=\frac{1}{2}\) \\
State or clearly imply \(b=\frac{5}{2}\) \\
(Implied by, for example, just \(\frac{1}{2}\) and \(\frac{5}{2}\) stated in that order)
\end{tabular} \& B1
B1 \& \begin{tabular}{l}
\(a=\frac{5}{2}\) and \(b=\frac{1}{2}\) earn во во
\[
\sin \left(-\frac{1}{2} \pi\right)+\frac{3}{2} \text { and } \sin \left(\frac{1}{2} \pi\right)+\frac{3}{2}
\] \\
earn BO B0 \\
Examiner's Comments \\
There was evidence that some candidates were not particularly familiar with the inverse sine function in this question; manipulation and evaluation of expressions were not always carried out accurately. Answers to part (i) demonstrated this unease as some responses involved \(\pi\) or \(\pm 8\). Many candidates were able to write down the two correct values of \(a\) and \(b\) immediately. Others identified the stretch and translation of the curve \(y=\sin ^{-1} x\) required to produce the given curve before determining the two values. Another approach involved solving two equations.
\end{tabular} \& \\
\hline \& ii
ii

ii

ii \& | (a) Carry out relevant calculations using radians |
| :--- |
| Obtain 1.6 and 2.4 or -0.1 and 0.6 |
| Conclude with reference to $1.6<1.7$ but $2.4>1.8$, or to sign change | \& M1

A1

A1 \& \begin{tabular}{l}
Involving $8 \sin ^{-1}\left(x-\frac{3}{2}\right)$ or $8 \sin ^{-1}\left(x-\frac{3}{2}\right)-x$

or equiv; needs two explicit calculations

Or equivs

Or equiv

Examiner's Comments

Part (ii)(a) is a routine verification of the location of the root but only 57% of the candidates earned all the marks. Some candidates used their calculators in degree mode and no marks were available in this part. A more significant problem concerned those candidates who evaluated $8 \sin ^{-1}\left(x-\frac{3}{2}\right)_{\text {at the two values. Obtaining } 1.61 \text { and } 2.44 \text {, }, ~ \text {, }}$ many were clearly surprised not to find a sign change; some then realised that subtraction of 1.7 and 1.8 respectively was needed or that

 \&

May carry out calculations in,

for example,

$$
\frac{3}{2}+\sin \left(\frac{1}{8} x\right)-x
$$

\end{tabular}

\hline
\end{tabular}

	ii ${ }_{\text {ii }}$	(b) State or imply $p=\frac{3}{2}$ and $q=\frac{1}{8}$ Obtain correct first iterate Carry out iteration process Obtain at least three correct iterates Conclude with clear statement that root is 1.712	B1 ${ }_{\text {B1 }}$	an observation that $1.61<1.7$ whereas $2.44>1.8$ was required. Evidence of calculations was needed; candidates who merely stated that there would be a sign change earned no marks in this part. Implied by presence in iterative formula Having started with value x_{1} such that $1.7 \leq x_{1} \leq 1.8$; given to at least 4 s.f. Obtaining at least three iterates in all; having started with any nonnegative value; implied by an apparently converging sequence of plausible values; all values to at least 4 s.f. Allowing recovery after error Final answer required to exactly 4 significant figures Examiner's Comments Use of iteration to find a root is usually a good source of marks for candidates in this unit. But on this occasion, this was not always the case; only 55% of the candidates earned all the marks in part (ii)(b) and 21% recorded no marks. Some did not know how to set up the iterative formula or there were errors in establishing the values of p and q; it was not uncommon for $q=8$ to be stated. There was limited credit available for those candidates using degrees. There was also confusion between significant figures and decimal places and those candidates offering 1.7124 as their final answer did not earn the final mark.	Answer only can earn no more than the first B1 for values of p and q; working in degrees can earn no more than the first B1 (for p and q) and M1
		Total	10		
5	i i	Draw more or less correct sketch of $y=\cos ^{-1} x$ existing in first and second quadrants Draw U-shaped parabola passing through origin and showing minimum point	*B1 *B1	Ignore any curve outside $0 \leq y \leq \pi$, condone no or wrong intercepts on axes Curve must exist in first and third quadrants	

(1)

	$\begin{aligned} & x_{n+1}=\frac{3 x_{n}^{3}-2 x_{n}^{2}-5 x_{n}-\left(x_{n}^{3}-x_{n}^{2}-5 x_{n}+10\right)}{3 x_{n}^{2}-2 x_{n}-5}= \\ & =\frac{2 x_{n}^{3}-x_{n}^{2}-10}{3 x_{n}^{2}-2 x_{n}-5} \end{aligned}$	[3]	AG a correct intermed to the given answer is	e step leading quired	
	$\begin{aligned} & x_{2}=-2.607 \\ & x_{3}=-2.535 \\ & x_{4}=-2.533 \end{aligned}$	B1(AO1.1) [1]	BC All three values must significant figures.	given to 4	
	$f(-2.5325)$ and $f(-2.5335)$ $\begin{aligned} & (-2.5325)^{3}-(-2.5325)^{2}-5(-2.5325)+10=0.0066125 \\ & (-2.5335)^{3}-(-2.5335)^{2}-5(-2.5335)+10=-0.0127017 \end{aligned}$ Since $\mathrm{f}(-2.5325)>0$ and $\mathrm{f}(-2.5335)<0$ x_{4} is a to 4 s.f.	M1(AO1.1) A1(AO2.1) E1(AO2.4) [3]	Accept other alternativ would confirm a as a s.f. At least the result of e be shown The change of sign m	values which t correct to 4 luation must t be pointed to	
	$3(-1)^{2}-2(-1)-5=0$ Since the fraction is undefined at $x=-1, x_{2}$ is undefined	B1(AO2.1) E1(AO1.2) [2]	Accept references to a stationary point of the function	or the tangent to the curve being horizontal	
	Total	9			

				line above must be seen	Suffices must be present	
	d	$x_{2}=\frac{11}{8}, x_{3}=1.28090 \ldots$ $x_{4}=1.27232 \ldots, x_{5}=1.27225 \ldots$ $a=1.272$	B1(AO1.1) B1(AO1.1) B1(AO1.1) [3]			
	e	$y=4 x-2$ was used to obtain the N-R formula and this line only intersects the 1st quadrant branch so can only give the positive root	B1(AO2.4) [1]			
		Total	11			
8	a	$1.4422,1.5099,1.5197,1.5211,1.5213,1.5214 \ldots$ Hence $a=1.521$	B1(AO1.1a) M1 (AO1.1) A1(AO2.2a) [3]	Correct x_{2} Use correct iterative process Obtain 1.521 (must be 4sf)		
	b	$\begin{aligned} & F^{\prime}(x)=-\left(x^{2}+4 x\right) x^{-4} \\ & F^{\prime}(d)=-1.57 \end{aligned}$ Will only converge if $\|F(\mathrm{a})\|<1$	B1(AO1.1) B1ft(AO1.1) E1(AO1.2)	Correct $\mathrm{F}^{\prime}(x)$ Correct F ' (α)		

	C	$\begin{aligned} & 0<0.808 \\ & 1>0.501 \end{aligned}$ change in inequality sign hence $0<$ root <1	M1 (AO 2.1) E1 (AO 2.4) [2]	Substitute x $=0$ $=0 n d ~$ 1 1 into both Could al sides of the equation $f(x)=x$ and atte $\mathrm{f}(1)=0.4$ Refer to Conclude Reppropriately	so rearrange to $+\tan ^{-1}\left(\frac{1}{2} x-\frac{1}{3} \pi\right)=0$ mpt $f(0)=-0.808$ and 499 change in sign	
	d	$\operatorname{eg} x_{1}=0.5, x_{2}=0.6730$ $0.6179,0.6360,0.6301,0.6320,0.6314,0.6316,0.6315,0.6315 \ldots$ hence root is 0.632	B1 (AO $1.1 \mathrm{a})$ M1 (AO $1.1 \mathrm{a})$ A1 (AO 1.1) [3]	Correct first iterate for $0<x<1$ Attempt correct iterative process Obtain root as 0.632	At least 2 more values Must be 3sf	
	e	add $y=x$ to diagram in P.A.B. and show first iteration at least 4 more lines to show cobweb	M1 (AO 1.2) A1 (AO 1.2) [2]	Vertical line from x_{1} and horizontal line to $y=x$ ie 2 vertical and 2 horizontal lines		
		Total	13			
11	a	$\frac{1}{\mathrm{e}^{2 x}}=\frac{x}{x^{2}+3} \Rightarrow x^{2}+3=x \mathrm{e}^{2 x}$ $x^{2}+3=x e^{2 x} \Rightarrow x^{2}+3-x e^{2 x}=0$	M1 (AO 1.1) A1 (AO 2.2a)	Equate expressions and cross-multiply (to remove fractions) AG - sufficient working must be		

		$\begin{aligned} & x_{4}=0.77016 \ldots, \quad x_{5}=0.77011 \ldots \\ & a=0.770 \text { (correct to } 3 \mathrm{dp}) \end{aligned}$	[3]	At least two correct applications of NR		
	d	$\begin{aligned} & \text { fR } \\ & \text { fo } x)=f\left(e^{-2 x}\right)=\frac{e^{-2 x}}{\left(e^{-2 x}\right)^{2}+3} \\ & 2 e^{-4 x}-13 e^{-2 x}+6=0 \\ & k=e^{-2 x} \\ & e^{-2 k}=\frac{1}{2} \Rightarrow x=-\frac{1}{2} \ln \left(\frac{1}{2}\right) \\ & e^{-2 x} \neq 6 Q \text { it is given that } x \geq 0 \end{aligned}$	M1 (AO 2.1) A1 (AO 1.1) M1* (AO 3.1a) M1dep* (AO 1.1) A1 (AO 2.2a) A1 (AO 2.3)	Attempt at $\mathrm{fg}(x)$ need not be simplified Correct equation fractions must be removed and powers simplified Substitute for $\mathrm{e}^{-2 x}$ (or equivalent) Attempt to solve resulting quadratic www oe Correct statement or equivalent that $e^{-2 x}$ cannot be greater than 1	Or equivalent Alternatively: Factorise into two brackets containing $\mathrm{e}^{-2 x} \mathrm{M} 2$	
		Total	16			

