1.

The diagram shows two circles of radius 7 cm with centres A and B. The distance $A B$ is 12 cm and the point C lies on both circles. The region common to both circles is shaded.
i. Show that angle $C A B$ is 0.5411 radians, correct to 4 significant figures.
ii. Find the perimeter of the shaded region.
iii. Find the area of the shaded region.
2.

The diagram shows a sector $B A C$ of a circle with centre A and radius 16 cm . The angle $B A C$ is 0.8 radians. The length $A D$ is 7 cm .
i. Find the area of the region $B D C$.
ii. Find the perimeter of the region $B D C$.
3.

The diagram shows a sector $O A B$ of a circle, centre O and radius 12 cm . The angle $A O B$ is $\frac{2}{3} \pi$ radians.
i. Find the exact length of the arc $A B$.
ii. Find the exact area of the shaded segment enclosed by the arc $A B$ and the chord $A B$.
4.

The diagram shows a sector $A O B$ of a circle with centre O and radius 8 cm . The angle $A O B$ is 1.2 radians. The points C and D lie on $O A$ and $O B$ respectively such that $O C=5.2 \mathrm{~cm}$ and $O D=2.6 \mathrm{~cm} . C D$ is a straight line.
i. Find the area of the shaded region $A C D B$.
ii. Find the perimeter of the shaded region $A C D B$.
5.

The diagram shows a sector $A O B$ of a circle with centre O and radius $r \mathrm{~cm}$. The angle $A O B$ is θ radians. The arc length $A B$ is 15 cm and the area of the sector is $45 \mathrm{~cm}^{2}$.
(a) Find the values of r and θ.
(b) Find the area of the segment bounded by the arc $A B$ and the chord $A B$.
6.

The diagram shows a sector $A O B$ of a circle with centre O. The length of the arc $A B$ is 6 cm and the area of the sector $A O B$ is $24 \mathrm{~cm}^{2}$. Find the area of the shaded segment enclosed by the arc $A B$ and the chord $A B$, giving your answer correct to 3 significant figures.

The diagram shows the triangle $A O B$, in which angle $A O B=0.8$ radians, $O A=7 \mathrm{~cm}$ and $O B$ $=10 \mathrm{~cm} . C D$ is the arc of a circle with centre O and radius $O C$. The area of the triangle $A O B$ is twice the area of the sector $C O D$.
(a) Find the length $O C$.
(b) Find the perimeter of the region $A B C D$.

Mark scheme

Question		Answer/Indicative content	Marks	Part marks and guidance	
1	i	$\cos ^{-16 / 7}=0.5411 \quad \mathrm{AG}$	M1 A1	Attempt correct method to find angle $C A B$ Obtain 0.5411	Either use cosine rule or right-angled trigonometry Allow M1 for $\cos A=6 / 7$ or equiv from cosine rule If first finding another angle, they must get as far as attempting angle CAB for the M1 Allow in degrees or radians Must be given to exactly 4sf, as per question If angle found as 31° then conversion to radians must be shown explicitly Examiner's Comments The majority of candidates were able to find the angle correctly, providing enough detail of the method used to be convincing. Using the cosine rule was a more popular approach than using a right-angled triangle. A surprising number of candidates first gave the required angle in degrees and then showed their conversion from degrees to radians, rather than simply setting their calculator into the appropriate mode.
	ii	$\begin{aligned} & \text { arc length }=7 \times(2 \times 0.5411)=7.575 \\ & \text { perimeter }=15.2 \end{aligned}$	M1	Attempt arc length using 7θ	Must be using $r=7$ Allow if using $\theta=0.5411$ not 1.0822 If no method shown then award M1 for value seen in the range [7.56, 7.58] MO if using angle other than 0.5411 or 1.0822 (inc MO for 1.0822π) but allow M1 if required angle is intended eg 0.54 or a slip when doubling 0.5411 Allow valid method with degrees, but MO for 7θ with θ in degrees

	ii ii ii ii ii	$\begin{aligned} & B D^{2}=\left(16^{2}+7^{2}-2 \times 16 \times 7 \times \cos 0.8\right) \\ & B D=12.2 \end{aligned}$ $\operatorname{arc} B C=16 \times 0.8=12.8$ $\text { per }=12.2+12.8+9=34.0 \mathrm{~cm}$	M1	Attempt length of $B D$ using correct cosine rule Obtain 12.2, or better State or imply that arc $B C$ is 12.8 Obtain 34, or better Examiner's Comments This was equally well done, with many concise and elegant solutions seen. The arc length was invariably correct, and candidates recognised the need to use the cosine rule though some struggled to evaluate this correctly, either by inserting imaginary brackets or by using the incorrect calculator mode. A surprising minority thought that $16-7=11$.	Must be correct cosine rule Allow M1 if not square rooted, as long as $B D^{2}$ seen MO if 0.8π used not 0.8 Allow if evaluated in degree mode (gives 9.00) Allow if incorrectly evaluated - using $\left(16^{2}+7^{2}-2 \times 16 \times 7\right) \times \cos 0.8 \text { gives } 7.51$ Allow any equiv method, as long as valid use of trig Attempting the cosine rule in part (i) will only get credit if result appears in part (ii) Allow any answer rounding to 12.2, with no errors seen Could be implied in method rather than explicit Allow if 16×0.8 seen, even if incorrectly evaluated
		Total	8		
3	i	$\operatorname{arc}=12 \times \frac{2 \pi}{3}$	M1	Attempt use of Θ	Allow M1 if using θ as $2 / 3$ M1 implied by sight of 25.1 , or better MO if θ used with θ in degrees M1 for equiv method using fractions of a circle, with θ as 120°

(1)

$\left.\begin{array}{|l|l|l|l|c|l|l|l|}\hline & & & & & \begin{array}{l}\text { perimeter of } \\ A B C D \\ \text { Obtain } 17.5 \mathrm{~cm}\end{array} & \\ \text { Allow } 17.4 \\ \text { www }\end{array}\right]$

