1. The quadratic equation $k x^{2}+(3 k-1) x-4=0$ has no real roots. Find the set of possible values of k.
2. i. Express $3 x^{2}+9 x+10$ in the form $3(x+p)^{2}+q$.
ii. State the coordinates of the minimum point of the curve $y=3 x^{2}+9 x+10$.
iii. Calculate the discriminant of $3 x^{2}+9 x+10$.
3. Solve the equation $8 x^{6}+7 x^{3}-1=0$.
4. Find the real roots of the equation $4 x^{4}+3 x^{2}-1=0$.
5. Express $5 x^{2}+10 x+2$ in the form $p(x+q)^{2}+r$, where p, q and r are integers.
6. Solve the equation $x^{\frac{2}{3}}-x^{\frac{1}{3}}-6=0$.
7. Find the set of values of k for which the equation $x^{2}+2 x+11=k(2 x-1)$ has two distinct real roots.
8. i. Express $4+12 x-2 x^{2}$ in the form $a(x+b)^{2}+c$.
ii. State the coordinates of the maximum point of the curve $y=4+12 x-2 x^{2}$.
9. Solve the equation $2 y^{\frac{1}{2}}-7 y^{\frac{1}{4}}+3=0$.
10. Show that, for all values of k, the equation $x^{2}+(k-5) x-3 k=0$ has real roots.
11. (a) Express $2 x^{2}+4 x+5$ in the form $p(x+q)^{2}+r$, where p, q and r are integers.
(b) State the coordinates of the turning point on the curve $y=2 x^{2}+4 x+5$.
(c) Given that the equation $2 x^{2}+4 x+5=k$ has no real roots, state the set of possible values of the constant k.
12. Find the roots of the equation $4 t^{\frac{2}{3}}=15-17 t^{\frac{1}{3}}$.
13.

(a) Express $4 x^{2}-12 x+11$ in the form $a(x+b)^{2}+c$.
(b) State the number of real roots of the equation $4 x^{2}-12 x+11=0$.
(c) Explain fully how the value of r is related to the number of real roots of the equation $p(x+q)^{2}+r=0$ where p, q and rare real constants and $p>0$.
14. (a) Express $2 x^{2}-12 x+23$ in the form $a(x+b)^{2}+c$.
(b) Use your result to show that the equation $2 x^{2}-12 x+23=0$ has no real roots.
(c) Given that the equation $2 x^{2}-12 x+k=0$ has repeated roots, find the value of the constant k.
15. (a)
(a) Show that $4 x^{2}-12 x+3=4\left(x-\frac{3}{2}\right)^{2}-6$.
(b) State the coordinates of the minimum point of the curve $y=4 x^{2}-12 x+3$.

Mark scheme

				majority realised that this needed to be less than zero. Given that both terms involved algebraic manipulation, determining the discriminant proved challenging to a large number of candidates. Similarly, the solution of the resulting quadratic inequality proved challenging, with added difficulty seeming to result from the fact that both roots were negative; a significant number thought that $-\frac{1}{9}$ was less than -1 , showing these roots in the wrong positions on the x-axis and getting the inequality the wrong way round when their intention was to choose the inside region. The best candidates handled all these obstacles well and produced short fluent solutions gaining all seven marks (as achieved by around one-third of candidates); some candidates were unable to start the question at all, instead trying to solve the equation using the quadratic formula.	
		Total	7		
2		$\begin{aligned} & 3\left(x^{2}+3 x\right)+10 \\ & =3\left(x+\frac{3}{2}\right)^{2}-\frac{27}{4}+10 \\ & =3\left(x+\frac{3}{2}\right)^{2}+\frac{13}{4} \end{aligned}$	B1 M1 A1	$\left(x+\frac{3}{2}\right)^{2}$ $10-3 p^{2}$ or $\frac{10}{3}-p^{2}$ Allow $p=\frac{3}{2}, q=\frac{13}{4} \mathbf{A 1} \mathbf{w w w}$	If p, q found correctly, then ISW slips in format. $\begin{aligned} & 3(x+1.5)^{2}-3.25 \text { B1 M0 A0 } \\ & 3(x+1.5)+3.25 \text { B1 M1 A1 (BOD) } \\ & 3(x+1.5 x)^{2}+3.25 \text { B0 M1 A0 } \\ & 3\left(x^{2}+1.5\right)^{2}+3.25 \text { B0 M1 AO } \\ & 3(x-1.5)^{2}+3.25 \text { B0 M1 A1 (BOD) } \\ & 3 x(x+1.5)^{2}+3.25 \text { B0M1A0 } \end{aligned}$
	i			Examiner's Comments The fact that the first digit was given in this "completing the square" question appeared to ease the difficulty somewhat, but this is still an area which many candidates find difficult with less than two-	

				of candidates, with around 70% achieving all 5 marks. As in previous sessions, some candidates did not make their choice of substitution clear which made it difficult to award marks. The question was best approached by factorisation, and those who opted to use the quadratic formula were often unable to deal with the required arithmetic. Most remembered to cube their solutions to the quadratic, although some did so inaccurately, particularly the fractional solution.	
		Total	5		
13	a	$\begin{array}{\|l\|l\|} \hline 4\left[x^{2}-3 x\right]+11 \\ \hline 4\left[\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}\right]+11 & a=4 \\ \hline 4\left(x-\frac{3}{2}\right)^{2}+2 & (x-3 / 2)^{2} \\ \hline & c=2 \\ \hline \end{array}$	B1 (AO 1.1) B1 (AO 1.1) B1 (AO 1.1)	No marks until attempt to complete the square Must be of the form $4(x \pm a)^{2} \pm$ \ldots Examiner's Comments This was done very well. Candidates seemed to be very familiar with completing the square. The most common simple numerical error was to have $c=8.75$. $(2 x-3)^{2}+2$ was seen occasionally.	
	b	No real roots	$\begin{gathered} \mathrm{B} 1 \\ (\mathrm{AO} 2.2 \mathrm{a}) \end{gathered}$	Zero, none, 0, ... if not 'no real	

			$(\mathrm{AO} 1.1)$ B 1 $(\mathrm{AO} 1.1)$ $[2]$		
		Total	5		

