2. The first term in an arithmetic series is $(5 t+3)$, where t is a positive integer. The last term is $(17 t+11)$ and the common difference is 4 . Show that the sum of the series is divisible by [7] 12 when, and only when, t is odd.
3. Prove algebraically that $n^{3}+3 n-1$ is odd for all positive integers n.
4. It is given that n is an integer. Prove by contradiction the following statement. n^{2} is even $\Rightarrow n$ is even
5. Charlie claims to have proved the following statement.
"The sum of a square number and a prime number cannot be a square number."
(a) Give an example to show that Charlie's statement is not true.

Charlie's attempt at a proof is below.
Assume that the statement is not true.
\Rightarrow There exist integers n and m and a prime p such that $n^{2}+p=m^{2}$.
$\Rightarrow p=m^{2}-n^{2}$
$\Rightarrow p=(m-n)(m+n)$
$\Rightarrow p$ is the product of two integers.
$\Rightarrow p$ is not prime, which is a contradiction.
\Rightarrow Charlie's statement is true.
(b) Explain the error that Charlie has made.
(c) Given that 853 is a prime number, find the square number S such that $S+853$ is also
a square number.
6.

Prove that the sum of the squares of any two consecutive integers is of the form $4 k+1$, where k is an integer.

Question		Answer/Indicative content Assume that there is a greatest even positive integer $N=2 k$ $N+2=2 k+2=2(k+1)$ Which is even and $N+2>N$ This contradicts the assumption Therefore there can be no greatest even positive integer	Marks *E1(AO2. 1) M1 (AO2. 1) dep*E1(AO2.4)	Guidance	
1				Proof must start with an assumption for contradiction There must be a statement denying the assumption for the final E1	
		Total	3		
2		$\begin{aligned} & (5 t+3)+4(n-1)=(17 t+11) \\ & n=3 t+3 \\ & S_{N}=\frac{1}{2}(3 t+3)\{(5 t+3)+(17 t+11)\} \\ & S_{N}=\frac{1}{2}(3 t+3)(22 t+14)=3(t+1)(11 t+7) \end{aligned}$ When t is odd, $t=2 k+1$ so $S_{N}=3(2 k+2)(22 t+18)$ $=12(k+1)(11 k+9)$ hence multiple of 12 When t is even, $t=2 k$ so $S_{N}=3(2 k+1)(22 k+7)$ hence always odd	M1 (AO3. 1a) A1(AO2. 1) M1 (AO2. 1) A1(AO2. 1) E1(AO2. 2a) E1(AO2. 4) E1(AO2. 4)	Attempt to use $a+(n-1) d=I$ Obtain $n=3 t+3$ Attempt to find sum of AP Obtain $S_{N}=3(t+$ 1) $(11 t+7)$ oe Consider S_{N} when t is odd Fully correct and convincing proof Allow worded eg $3 \times$ odd \times odd	Allow consideration of odd and even factors
		Total	7		

Question		Answer/Indicative content	Marks	Guidance
5	a	eg $1+3=4$ or $4+5=9$ or $9+7=16$	$\begin{gathered} \mathrm{B} 1 \\ (\mathrm{AO} 1.1) \end{gathered}$ [1]	or $25+11=36$ or any correct example Examiner's Comments Almost all candidates answered this correctly
	b	If $m-n=1 \quad$ (or -1) then $(m-n)(m+n)$ could be prime	$\begin{gathered} E 1 \\ (A O 2.3) \end{gathered}$ [1]	(or if $m+n=1)$ or One of the factors of p could be 1 Examiner's Comments Many candidates identified the error correctly although a large variety of incorrect suggestions were seen, such as "He has proved something that is false is correct, but that doesn't prove his point correct.", "He assumes that the statement is not true.", " p could be 0 ", " $m+n$ could be zero.", "He hasn't chosen m and n to be integers.", " p is not the product of two integers, $p=m^{2}-n^{2}$.", "He has not stated that m and n are square numbers.".

Question		Answer/Indicative content	Marks	Guidance
	C	$\begin{aligned} & \text { Let } S=n^{2} \\ & \Rightarrow \text { Other square number is }(n+1)^{2} \\ & \Rightarrow 853=(n+1)^{2}-n^{2}=2 n+1 \\ & \Rightarrow n=426 \\ & \Rightarrow S=181476 \end{aligned}$	M1 (AO 3.1a) M1 (AO 2.2a) A1 (AO 1.1) A1 (AO 3.2a)	 Examiner's Comments Some candidates recognised that the starting point was $m-n=1$. Most of these proceeded to obtain the correct answer (although a few squared 427 instead of 426). Many candidates, however, did not appreciate the link with part (b) and attempted trial and improvement, without success.
		Total	6	
6		$\begin{aligned} & n^{2}+(n+1)^{2}=2 n^{2}+2 n+1 \\ & =2 n(n+1)+1 \end{aligned}$ Either n or $n+1$ is even $\Rightarrow 2 n(n+1)$ is a multiple of 4 (or is of form 4k) $\Rightarrow n^{2}+(n+1)^{2}$ is of the form $4 k+1$	M1 (AO3.1a) M1 (AO2.1) A1 (AO2.4) B1 (AO2.4) $[4]$	Attempted This form Statement including reason Statement of result, dependent on correct working
		Total	4	

