1. Prove by contradiction that there is no greatest even positive integer.

[3]

^{2.} The first term in an arithmetic series is (5t + 3), where *t* is a positive integer. The last term is (17t + 11) and the common difference is 4. Show that the sum of the series is divisible by [7] 12 when, and only when, *t* is odd.

3. Prove algebraically that $n^3 + 3n - 1$ is odd for all positive integers *n*.

4. It is given that *n* is an integer. Prove by contradiction the following statement. n^2 is even $\Rightarrow n$ is even [4]

5. Charlie claims to have proved the following statement.

"The sum of a square number and a prime number cannot be a square number."

(a) Give an example to show that Charlie's statement is not true.

Charlie's attempt at a proof is below.

Assume that the statement is not true.

- ⇒ There exist integers *n* and *m* and a prime *p* such that $n^2 + p = m^2$.
- $\Rightarrow p = m^2 n^2$
- $\Rightarrow p = (m n)(m + n)$
- $\Rightarrow p$ is the product of two integers.
- $\Rightarrow \rho$ is not prime, which is a contradiction.
- \Rightarrow Charlie's statement is true.

(b) Explain the error that Charlie has made.

(c) Given that 853 is a prime number, find the square number S such that S + 853 is also [4] a square number.

6.

[1]

Prove that the sum of the squares of any two consecutive integers is of the form 4k + 1, where *k* is an integer.

END OF QUESTION paper

Question		Answer/Indicative content	Marks	Guidance	
		Assume that there is a greatest even positive integer $N = 2k$ N + 2 = 2k + 2 = 2(k + 1)	*E1(AO2. 1) M1(AO2. 1)	Proof must start with an assumption for contradiction	
		Which is even and $N + 2 > N$ This contradicts the assumption Therefore there can be no greatest even positive integer	dep*E1(AO2.4) [3]	There must be a statement denying the assumption for the final E1	
		Total	3		
		(5t + 3) + 4(n - 1) = (17t + 11)	M1(AO3. 1a)	Attempt to use $a + (n - 1)d = l$	
		<i>n</i> = 3 <i>t</i> + 3	A1(AO2. 1)	Obtain <i>n</i> = 3 <i>t</i> + 3	
		$S_N = \frac{1}{2} (3t+3) \{ (5t+3) + (17t+11) \}$	M1(AO2.	Attempt to find	
		$S_N = \frac{1}{2} (3t+3)(22t+14) = 3(t+1)(11t+7)$	1) A1(AO2. 1)	sum of AP Obtain $S_N = 3(t + 1)(11t + 7)$ oe	
		When <i>t</i> is odd, $t = 2k + 1$ so	E1(AO2. 2a)	Consider <i>S</i> _N when <i>t</i> is odd	Allow consideration of odd and even
		$S_N = 3(2k+2)(22t+18)$			factors
		= $12(k + 1)(11k + 9)$ hence multiple of 12	E1(AO2. 4)	Fully correct and convincing proof	
		When <i>t</i> is even, $t = 2k$ so			
		$S_N = 3(2k + 1)(22k + 7)$ hence always odd	E1(AO2. 4)	Allow worded eg 3 × odd × odd	
			[7]		
		Total	7		
			positive integer $N = 2k$ N + 2 = 2k + 2 = 2(k + 1) Which is even and $N + 2 > N$ This contradicts the assumption Therefore there can be no greatest even positive integer Total (5t + 3) + 4(n - 1) = (17t + 11) n = 3t + 3 $S_N = \frac{1}{2} (3t + 3) \{(5t + 3) + (17t + 11)\}$ $S_N = \frac{1}{2} (3t + 3)(22t + 14) = 3(t + 1)(11t + 7)$ When t is odd, $t = 2k + 1$ so $S_N = 3(2k + 2)(22t + 18)$ = 12(k + 1)(11k + 9) hence multiple of 12 When t is even, $t = 2k$ so $S_N = 3(2k + 1)(22k + 7)$ hence always odd	positive integer $N = 2k$ 1) $N + 2 = 2k + 2 = 2(k + 1)$ M1(AO2. Which is even and $N + 2 > N$ dep*E1(AO2.4) This contradicts the assumption Therefore there can be no greatest even positive integer Image: Distribution of the even positive integer 1 Image: Distribution of the even positive integer 1 Image: Distribution of the even positive integer 3 Image: Distribution of the even positive integer 10 Image: Distribution of the even positive integer 11 Image: Distret	positive integer $N = 2k$ 1with an assumption for contradiction $N + 2 = 2k + 2 = 2(k + 1)$ 1M1(AO2. 1)There contradictionWhich is even and $N + 2 > N$ This contradicts the assumption Therefore there can be no greatest even positive integerThere must be a statement denying the assumption for the final E1Total3Image: Contradict of the positive integerImage: Contradict of the positive integerM1(AO3. 1a)Attempt to use $a + (n - 1)d = 1$ Image: Contradict of the positive integerImage: Contradict of the positive integerM1(AO3. 1a)Attempt to use $a + (n - 1)d = 1$ Image: Contradict of the positive integerImage: Contradict of the positive integerM1(AO3. 1a)Attempt to use $a + (n - 1)d = 1$ Image: Contradict of the positive integerImage: Contradict of the positive integerM1(AO2. 1)Attempt to use $a + (n - 1)d = 1$ Image: Contradict of the positive integerImage: Contradict of the positive integerM1(AO2. 1)Attempt to find sum of AP Obtain $S_N = 3(t + 1)(11t + 7)$ Image: Contradict of the positive integerImage: Contradict of the positive integer

Question	Answer/Indicative content	Marks	Guidance	
3	If <i>n</i> is even then <i>n</i> can be written as $2m$. $n^3 + 3n - 1 = 8m^3 + 6m - 1$	E1 (AO 2.1)	Consider when <i>n</i> is even	Substitute 2 <i>m</i> or equiv Must include reasoning, including that 2 <i>m</i> represents an even number
	= $2(4m^3 + 3m) - 1$ For all <i>m</i> , $2(4m^3 + 3m)$ is even, hence $2(4m^3 + 3m) - 1$ is odd	E1 (AO 2.4)	Conclude from useable form	Must be of a form where odd can be easily deduced SR E1 for If <i>n</i> is even, n^3 is even, $3n$ is even, hence $n^3 + 3n$ is even + even = even and therefore $n^3 + 3n - 1$ is even - odd = odd Each step must be justified
	If <i>n</i> is odd then <i>n</i> can be written as $2m + 1$ $n^{3} + 3n - 1 = 8m^{3} + 12m^{2} + 6m + 1 + 6m + 3 - 1$ $= 8m^{3} + 12m^{2} + 12m + 3$	E1 (AO 2.1)	Consider when <i>n</i> is odd	Substitute $2m + 1$ or equiv Must include reasoning, including that 2m + 1 represents an odd number
	$= 2(4m^{3} + 6m^{2} + 6m) + 3$ For all <i>m</i> , 2(4m ³ + 6m ² + 6m) is even, hence 2(4m ³ + 6m ² + 6m) + 3 is odd	E1 (AO 2.4) [4]	Conclude from useable form	Must be of a form where odd can be easily deduced SR E1 for If <i>n</i> is odd, n^3 is odd, $3n$ is odd, hence $n^3 + 3n$ is odd + odd = even and therefore $n^3 + 3n - 1$ is even – odd = odd Each step must be justified

Question	Answer/Indicative content	Marks	Guidance
			Examiner's Comments Candidates were expected to provide an algebraic proof, considering both odd and even <i>n</i> and justifying their method. Many candidates made it clear which case was being considered, whereas others introduced $2k$ and $2k + 1$, but with no explanation of what these terms represented. The algebraic manipulation was usually correct and candidates then wrote the expressions in a useable form. Some candidates then simply stated that the expression must be odd, but did not justify this statement. A number of candidates provided a worded argument based on the use of odd and even numbers. As long as each step was explained then partial credit was given, but full credit in this question was only available for convincing use of algebra. Exemplar 2 $\frac{4 + (-1)^3 + 3a - 1.60 \text{ Were a W = positive lays.} (4 + 6 + 6) + 6 + 6 + 6) + 6 + 6 + 6 + 6 +$
			This candidate states that they are using $2p$ to represent an even number; simply using $2p$ with no justification would not have gained the first mark. Having

Question		n	Answer/Indicative content	Marks	Guidance	
					substituted and rearranged they then clearly explain that their expression is of the form $2k - 1$, which represents an odd number. An alternative explanation would be to say that for all p , $2(4p^3 + 3p)$ is even as it has a factor of 2 hence $2(4p^3 + 3p) - 1$ is odd. Simply concluding 'odd' but with no justification would not have gained the second mark. This candidate's proof of why the expression is odd when <i>n</i> is odd is equally convincing, so this response gained full credit.	
			Total	4		
4			<i>n</i> ² is even.			
			Assume <i>n</i> is odd, ie $n = 2r + 1$, where <i>r</i> is an int.	M1(AO 3.1a)		
			$n^2 = 4r^2 + 4r + 1$	A1(AO 1.1)		
			$= 4(r^2 + r) + 1$	M1(AO 2.1)		
			Hence n^2 is odd.	E1(AO 2.1)	Stated	
			This contradicts the original statement, hence assumption is false, hence <i>n</i> is even	E1(AO 2.2a)	All three phrases essential	
				[5]		
			Total	5		

Question		Answer/Indicative content	Marks	Guidance	
5	а	eg 1 + 3 = 4 or 4 + 5 = 9 or 9 + 7 = 16	B1 (AO 1.1)	or 25 + 11 = 36 or any correct example	
			[1]	Examiner's Comments	
				Almost all candidates answered this correctly	
	b	If $m - n = 1$ (or -1) then $(m - n)(m + n)$ could be prime	E1 (AO 2.3)	or One of the factors of p could be 1	
			[1]	Examiner's Comments	
				Many candidates identified the error correctly although a large variety of incorrect suggestions were seen, such as "He has proved something that is false is correct, but that doesn't prove his point correct.", "He assumes that the statement is not true.", " <i>p</i> could be 0", " <i>m</i> + <i>n</i> could be zero.", "He hasn't chosen <i>m</i> and <i>n</i> to be integers.", " <i>p</i> is not the product of two integers, $p = m^2 - n^2$.", "He has not stated that <i>m</i> and <i>n</i> are square numbers.".	

Question	Answer/Indicative content	Marks	Guidance	
c	Let $S = n^2$ \Rightarrow Other square number is $(n + 1)^2$ $\Rightarrow 853 = (n + 1)^2 - n^2 = 2n + 1$ $\Rightarrow n = 426$ $\Rightarrow S = 181476$	M1 (AO 3.1a) M1 (AO 2.2a) A1 (AO 1.1) A1 (AO 3.2a)	or Other square number is $(\sqrt{S} + 1)^2$ $\Rightarrow 853 = (\sqrt{S} + 1)^2 - S = 2\sqrt{S} + 1$ $\Rightarrow \sqrt{S} = 426$ $\Rightarrow S = 181476$ m - n = 1, m + n = 853 M1 2m = 854 M1 m = 427 n = 426 A1 $n^2 = 181476$ A1 Examiner's Comment Some candidates reconstarting point was $m - p$ proceeded to obtain the few squares of the second se	$\Rightarrow n = 426$ $\Rightarrow S = 181476$ T & I: 426 seen M1M1A1 S = 181476 A1 S s ognised that the - n = 1. Most of these he correct answer red 427 instead of
			426). Many candidate appreciate the link with attempted trial and im success.	th part (b) and
	Total	6		
6	$n^{2} + (n + 1)^{2} = 2n^{2} + 2n + 1$ = $2n(n + 1) + 1$ Either <i>n</i> or <i>n</i> + 1 is even	M1 (AO3.1a) M1 (AO2.1)	Attempted This form	
	⇒ $2n(n + 1)$ is a multiple of 4 (or is of form 4k) ⇒ $n^2 + (n + 1)^2$ is of the form $4k + 1$	A1 (AO2.4) B1	Statement including reason Statement of	
		(AO2.4) [4]	result, dependent on correct working	
	Total	4		