1. (a) A student suggests that, for any prime number between 20 and 40, when its digits are squared and then added, the sum is an odd number.

For example, 23 has digits 2 and 3 which gives $2^{2}+3^{2}=13$, which is odd.
Show by counter example that this suggestion is false.
(b) Prove that the sum of the squares of any three consecutive positive integers cannot be [3] divided by 3.
2. (a) Jack makes the following claim.
"If n is any positive integer, then $3^{n}+2$ is a prime number."
Prove that Jack's claim is incorrect.
(b) Jill writes the following statement.

$$
x=3 \Leftrightarrow x^{2}=9
$$

(i) Explain why Jill's statement is incorrect.
(ii) Write a corrected version of Jill's statement.
3. Prove by exhaustion that if the sum of the digits of a 2 -digit number is 5 , then this 2-digit number is not a perfect square.
4. In each of the following cases choose one of the statements

$$
P \Rightarrow Q \quad P \Leftarrow Q \quad P \Leftrightarrow Q
$$

to describe the relationship between P and Q.
(a) P. $y=3 x^{5}-4 x^{2}+12 x$

$$
Q: \frac{\mathrm{d} y}{\mathrm{~d} x}=15 x^{4}-8 x+12
$$

(b) $\begin{aligned} & \text { P: } x^{5}-32=0 \text { where } x \text { is real } \\ & \text { Q: } x=2\end{aligned}$
(c) $\begin{aligned} & P: \ln y<0 \\ & Q: y<1\end{aligned}$
5.
N is an integer that is not divisible by 3 . Prove that N^{2} is of the form $3 p+1$, where p is an integer.

Mark scheme

Question		Answer/Indicative content	Marks	Guidance		
1	a	31 gives $3^{2}+1^{2}=10$ 10 is even and hence the suggestion is false	M1 (AO2.1) E1(AO2.1) [2]		OR M1 37 gives 3^{2} $+7^{2}=58$ E1 58 is even and hence the suggestion is false	
	b	$n^{2}+(n+1)^{2}+(n+2)^{2}$ $3 n^{2}+6 n+5$ $3\left(n^{2}+2 n+1\right)+2$ which always leaves a remainder of 2 and so cannot be divided by 3	M1(AO2.1) A1FT(AO1.1) E1(AO2.1) [3]	Any valid expressions for three consecutive integers FT their expressions Correct conclusion		
		Total	5			
2	a	At least one correct calc'n of $3^{n}+2$ with $n \geq 1$ $3^{5}+2=245$ 245 is div by 5 , so statement incorrect	M1(AO1.1a) A1(AO2.1) E1(AO2.1) [3]	$\begin{aligned} & \text { or eg } 3^{6}+2= \\ & 731 \\ & 731 \text { is div by } \\ & 17, \text { so } \\ & \text { statement } \\ & \text { incorrect } \end{aligned}$	One contradiction seen Must see this line oe	
$\left.\right\|^{b}$		$\begin{aligned} & \text { i) }(-3)^{2}=9 \text { or } x=-3 \text { gives } x^{2}=9 \\ & \text { ii) } x=3 \Rightarrow x^{2}=9 \quad \text { or } \quad x= \pm 3 \Leftrightarrow x=9 \end{aligned}$	B1(AO2.3) [1] B1(AO2.1) [1]	oe		
		Enter text here.				
			Total	5		

