1. i. Kathryn is allowed three attempts at a high jump. If she succeeds on any attempt, she does not jump again. The probability that she succeeds on her first attempt is $\frac{3}{4}$. If she fails on her first attempt, the probability that she succeeds on her second attempt is $\frac{3}{8}$. If she fails on her first two attempts, the probability that she succeeds on her third attempt is $\frac{3}{16}$. Find the probability that she succeeds.
ii. Khaled is allowed two attempts to pass an examination. If he succeeds on his first attempt, he does not make a second attempt. The probability that he passes at the first attempt is 0.4 and the probability that he passes on either the first or second attempt is 0.58 . Find the probability that he passes on the second attempt, given that he failed on the first attempt.
2. The table shows the numbers of members of a swimming club in certain categories.

	Male	Female
Adults	78	45
Children	52	n

It is given that $\frac{5}{8}$ of the female members are children.
i. Find the value of n.
ii. Find the probability that a member chosen at random is either female or a child (or both).

The table below shows the corresponding numbers for an athletics club.

	Male	Female
Adults	6	4
Children	5	10

iii. Two members of the athletics club are chosen at random for a photograph.
a. Find the probability that one of these members is a female child and the other is an adult male.
b. Find the probability that exactly one of these members is female and exactly one is a child.
3. Each question on a multiple-choice examination paper has n possible responses, only one of which is correct. Joni takes the paper and has probability p, where $0<p<1$, of knowing the correct response to any question, independently of any other. If she knows the correct response she will choose it, otherwise she will choose randomly from the n possibilities. The events K and A are 'Joni knows the correct response' and 'Joni answers correctly' respectively.
i. Show that $\mathrm{P}(A)=\frac{q+n p}{n}$ where $q=1-p$.
ii. Find $P(K / A)$.

A paper with 100 questions has $n=4$ and $p=0.5$. Each correct response scores 1 and each incorrect response scores - 1 .
iii.
a. Joni answers all the questions on the paper and scores 40. How many questions did she answer correctly?
b. By finding the distribution of the number of correct answers, or otherwise, find the probability that Joni scores at least 40 on the paper using her strategy.
4. During an outbreak of a disease, it is known that 68% of people do not have the disease. Of people with the disease, 96% react positively to a test for diagnosing it, as do $m \%$ of people who do not have the disease.
i. In the case $m=8$, find the probability that a randomly chosen person has the disease, given that the person reacts positively to the test.
ii. What value of m would be required for the answer to part (i) to be 0.95 ?
5. For the events A and B it is given that

$$
\mathrm{P}(A)=0.6, \mathrm{P}(B)=0.3 \text { and } \mathrm{P}(A \text { or } B \text { but not both })=0.4 \text {. }
$$

i. Find $\mathrm{P}(A \cap B)$.
ii. Find $\mathrm{P}\left(A^{\prime} \cap B\right)$.
iii. State, giving a reason, whether A and B are independent.
6. Events A and B are such that $\mathrm{P}(A)=0.5, \mathrm{P}(B)=0.6$ and $\mathrm{P}\left(A \mid B^{\prime}\right)=0.75$.
i. Find $\mathrm{P}(A \cap B)$ and $\mathrm{P}(A \cap B)$.
ii. Determine, giving a reason in each case,
a. whether A and B are mutually exclusive,
b. whether A and B are independent.
iii. A further event C is such that $\mathrm{P}(A \cup B \cup C)=1$ and $\mathrm{P}(A \cap B \cap C)=0.05$. It is also given that $\mathrm{P}\left(A \cap B^{\prime} \cap G\right)=\mathrm{P}\left(A^{\prime} \cap B \cap C\right)=x$ and $\mathrm{P}\left(A \cap B^{\prime} \cap C^{\prime}\right)=2 x$. Find $P(G)$.
7. Each of the 30 students in a class plays at least one of squash, hockey and tennis.

- 18 students play squash
- 19 students play hockey
- 17 students play tennis
- 8 students play squash and hockey
- 9 students play hockey and tennis
- 11 students play squash and tennis
(a) Find the number of students who play all three sports.

A student is picked at random from the class.
(b) Given that this student plays squash, find the probability that this student does not play hockey.

Two different students are picked at random from the class, one after the other, without replacement.
(c) Given that the first student plays squash, find the probability that the second student [4] plays hockey.
8.
(a) Events A and B are independent, and $\mathrm{P}(A \cap B)=\frac{1}{24}$ and $\mathrm{P}(A \cup B)=\frac{3}{8}$.

Find $\mathrm{P}(A)$ and $\mathrm{P}(B)$.
(b) Events C and D are such that $P(C)=0.6, P(D)=0.3$ and $P(C \cup D)=0.8$. Find P
$\left(D \mid C^{\prime}\right)$.
9. For events A, B and C it is given that $\mathrm{P}(A)=0.6, \mathrm{P}(B)=0.5, \mathrm{P}(C)=0.4$ and $\mathrm{P}(A \cap B \cap C)=$ 0.1 . It is also given that events A and B are independent and that events A and C are independent.
(i) Find $\mathrm{P}(B \mid A)$
(ii) Given also that events B and C are independent, find $\mathrm{P}\left(A^{\prime} \cap B^{\prime} \cap C\right)$.

Given instead that events B and C are not independent, find the greatest and least (iii) possible values of
$\mathrm{P}\left(A^{\prime} \cap B^{\prime} \cap C^{\prime}\right)$.

Mark scheme

Question		Answer/Indicative content	Marks	Part marks and guidance	
1	i	$\begin{aligned} & \frac{3}{4}+\frac{1}{4} \times \frac{3}{8} \\ & +\frac{1}{4} \times \frac{5}{8} \times \frac{3}{16} \\ & =\frac{447}{512} \text { or } 0.873(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1	$\begin{aligned} & \frac{1}{4} \times \frac{5}{8} \times \frac{13}{16} \quad\left(=\frac{65}{512} \text { or } 0.127\right) \\ & 1-\frac{1}{4} \times \frac{5}{8} \times \frac{13}{16} \end{aligned}$ Examiner's Comments Most candidates answered this part correctly. A few omitted the probability of success at either the first attempt or the third attempt. Others thought that the probability of success at the third attempt was $\frac{1}{4} \times \frac{5}{8} \times \frac{13}{16}$ instead of $\frac{1}{4} \times \frac{5}{8} \times \frac{3}{16}$. Only a few chose the more elegant method using the complement.	
	ii	$0.6 p$ or equiv seen $0.4+0.6 p=0.58$ $p=0.3$	B1 M1 A1	Tree diag alone insufficient for mark. Or $0.6 p=0.18$. " 0.18 " alone insufficient Examiner's Comments Many good answers were seen. Some candidates appeared not to understand the difference between P (he passes on the $2^{\text {nd }}$ attempt) and P (he passes on the $2^{\text {nd }}$ attempt, given that he failed on the first), giving an answer of $0.58-0.4=0.18$. A few formed an equation, but with the term " 0.4 p " instead of " $0.6 p$ ". Some found the correct answer of 0.3 but then unnecessarily continued by using the formula $\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})}{\mathrm{P}(\mathrm{~B})}=\frac{0.6 \times 0.3}{0.6}=0.3$ Others, having found the correct value of 0.3 , continued with $0.6 \times 0.3=0.18$.	NB $0.6 \times 0.3=0.18$ seen at the end is probably a check, not an answer. But if 0.3 seen and 0.18 is very clearly indicated as the ans then B1M1AO

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& If candidates did not make clear that this last line was only a check, rather than an answer, they were likely to lose the final mark. Many candidates gave incorrect attempts based on misunderstandings of conditional probability, such as $0.4 \div 0.58=0.690$. \&

\hline \& \& Total \& 6 \& \&

\hline 2 \& i

i \& $$
\begin{aligned}
& \frac{n}{n+45}=\frac{5}{8} \text { or } n: 45=5: 3 \\
& \frac{3}{8}: 45= \\
& \frac{5}{8}: n \\
& n=75
\end{aligned}
$$ \& M1

A1 \& | $\begin{aligned} & \frac{3 F}{8}=45 \& n=\frac{5}{8} \times F ; \\ & 45 \times \frac{8}{3}-45 ; \quad 45 \times \frac{8}{3} \times \frac{5}{8} \end{aligned}$ |
| :--- |
| Examiner's Comments |
| Although many candidates had no problem with this part, a disappointing number appeared to have trouble coping with simple ratio and proportion. A common incorrect response was $\frac{5}{8} \times 45=28.125$, rounded to 28. Another common response was $n=45 \times \frac{8}{5}=72$. | \& correct first step involving n or complete correct method for finding n

\hline \& ii \& | $\frac{45+" 75 \text { " }+52}{45+75 \text { " }+52+78}$ alone oe |
| :--- |
| $=\frac{86}{125}$ or $\frac{172}{250}$ or $0.688(3 \mathrm{sf})$ oe | \& M1

A1 ft \& | $1-\frac{78}{45+" 75 "+52+78}$ oe |
| :--- |
| or $\frac{" 250 "-78}{" 250 "}$ oe |
| Completely correct method |
| ft their integer answer to (i) |
| eg if their (i) is 28 , ans 0.616 or M1A1ft |
| Examiner's Comments |
| This is a simple question requiring the addition of three numbers (or | \& \[

$$
\begin{aligned}
& \frac{45+" 75 "}{" 250 "}+\frac{52+" 75 "}{" 250 "}-\frac{" 75 "}{" 250 "} \\
& \text { or } 0.48+0.508-0.48 \times 0.508
\end{aligned}
$$
\]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& iii \({ }^{\text {iii }}\) \& \begin{tabular}{l}
(b) FA + MC or FC + MA \\
Either \(\frac{4}{25} \times \frac{5}{24} \times 2\) \\
or \(\quad \frac{10}{25} \times \frac{6}{24} \times 2\) \\
NB ft their \\
(iiia)
\[
\begin{aligned}
\& \left(\frac{4}{25} \times \frac{5}{24} \times 2+\frac{10}{25} \times \frac{6}{24} \times 2=\frac{1}{5}+\frac{1}{15}\right) \\
\& =\frac{4}{15} \text { or } 0.267(3 \mathrm{sf})
\end{aligned}
\]
\end{tabular} \& M1 \& \begin{tabular}{l}
Allow \(\frac{10}{25} \times \frac{6}{25} \times 2\) or \(\frac{4}{25} \times \frac{5}{25} \times 2\) \\
or \(\frac{10}{25} \times \frac{6}{24}+\frac{4}{25} \times \frac{5}{24}\) \\
or \(\frac{10}{25} \times \frac{6}{25}+\frac{4}{25} \times \frac{5}{25}\) \\
NB ft their (iii)(a)
\[
\frac{{ }^{10} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{1}}{{ }^{25} \mathrm{C}_{2}}+\frac{{ }^{4} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{1}}{{ }^{25} \mathrm{C}_{2}} \text { oe or } \frac{60+20}{300} \text { oe }
\] \\
Examiner's Comments \\
Mistakes made in part (i) were carried over into this part. Some candidates found \(P(\) female child \() \times P(\) adult male \()\), but not \(P\) (adult female) \(\times P(\) male child \()\). Some very common errors involved such working as \(\mathrm{P}(\) female \() \times \mathrm{P}(\) child \()=\) \(\frac{14}{25} \times \frac{15}{25}\)
\end{tabular} \& \begin{tabular}{l}
ie allow 25 instead of 24 AND \\
allow one case with \(\times 2\) \\
or both cases without \(\times 2\) \\
ie allow 25 and one of these two errors \\
cf scheme for (iii)(a) \\
allow M1 if one of these fracts correct NB \({ }^{25} \mathrm{C}_{2}\) in denom NOT M1, cf (iii)(a) \\
NB see note on long methods in 7(iiia)
\end{tabular} \\
\hline \& \& Total \& 8 \& \& \\
\hline 3 \& i \& \[
\begin{aligned}
\& \mathrm{P}(A)=\mathrm{P}(K) \times 1+\mathrm{P}\left(K^{\prime}\right) \times 1 / n \\
\& \quad=p+(1-p) / n \\
\& \quad=\frac{q+n p}{n} \mathrm{AG}
\end{aligned}
\] \& M1
A1

B1 \& | Alow $p+\frac{q}{n}$ |
| :--- |
| Examiner's Comments |
| Almost all the candidates scored full marks. | \&

\hline \& ii \& $\mathrm{P}(\mathrm{K} \cap A)=p$ \& B1 \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& iii

iiii \& \[
$$
\begin{aligned}
& \operatorname{Var}(S)=1^{2} \times 5 / 8+1^{2} \times 3 / 8-(1 / 4)^{2} \\
& \text { Total, } T \sim \mathrm{~N}(25,93.75) \\
& \mathrm{P}(T \geq 40)=1-\Phi[39-25) / \sqrt{ }(93.75)] \\
& =0.0741
\end{aligned}
$$

\] \& | M1A1 |
| :--- |
| M1A1 |
| B1 | \& | As for β |
| :--- |
| Examiner's Comments |
| Over half the candidates gained full marks, but there were some very confused attempts, muddling the various methods given on the mark scheme. Many obtained an incorrect value of p, using the answer to (i) instead of (i). | \&

\hline \& \& Total \& 13 \& \&

\hline 4 \& 1 \& | $0.32 \times 0.96 \text { or } 0.68 \times 0.08$ |
| :--- |
| Both, added. $\begin{aligned} & =0.3616 \\ & 0.32 \times 0.96 \div " 0.3616 \text { " } \end{aligned}$ 0.850 | \& | M1 |
| :--- |
| M1 |
| A1 |
| M1 |
| A1 | \& | May be implied. |
| :--- |
| Allow 0.85 or $\frac{96}{113}$ |
| Examiner's Comments |
| Almost all candidates scored full marks. | \& Allow M marks for 0.8 instead of 0.08 or incorrect $1-0.68$.

\hline \& ii \& | $\frac{0.32 \times 0.96}{0.32 \times 0.96+0.68 \times p}=0.95$ |
| :--- |
| Solve | \& | M1,A1 |
| :--- |
| M1 | \& | Allow 0.3072 |
| :--- |
| Allow failure to multiply brackets correctly, but NOT divide instead of subtract or vv. | \&

\hline
\end{tabular}

	ii	$p=0.0238$, so $m=2.38$	A1	$\frac{192}{1075}$ Examiner's Comments Most candidates scored full marks. A few lost the final mark by saying $m=$ 0.0238 . Some weaker candidates could not solve the equation.	
		Total	9		
5	i	Let $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=x, 0.6-x+0.3-x=0.4$ $x=0.25$	M1A1 A1	M1 for attempt to set up equation in x . Examiner's Comments Almost all gained full marks. Those who did not usually obtained the answer 0.5 .	x must appear more than once.
	ii	0.05	B1 ft	0.3 -(i). Ans must be ≤ 0. Examiner's Comments Those who were correct in (i) were also correct here.	
	iii	No, $0.6 \times 0.3 \neq 0.25$	B1 ft	Must have an answer to (i) Examiner's Comments Almost all the candidates earned this mark. Those who were incorrect in (i) usually scored the mark on follow through.	$P\left(B \mid A^{\prime}\right)=0.05 \div 0.4=0.125 \neq P(B)$
		Total	5		
6	i	$\begin{aligned} & \mathrm{P}\left(A \cap B^{\prime}\right)=0.75 \times 0.4=0.3 \\ & \mathrm{P}(A \cap B)=0.5-\text { "0.3" }=0.2 \end{aligned}$	M1A1 M1A1		

				three is 4. EO for just $x=4$	
	b	$\frac{5}{9}_{\partial e}$	B1FT(AO2.2a) [1]	FT their (a)	
	c	$\begin{aligned} & \frac{5}{9} \times \frac{19}{29} \\ & \frac{4}{9} \times \frac{18}{29} \\ & \frac{5}{9} \times \frac{19}{29}+\frac{4}{9} \times \frac{18}{29} \\ & =\frac{167}{261} \text { oe or } 0.640(3 \mathrm{s.f}) \end{aligned}$	B1(AO2.2a) B1(AO2.2a) M1 (AO2.2a) A1(AO1.1) [4]	All correct	
		Total	8		
8	a	$\begin{aligned} & \mathrm{P}(A) \times \mathrm{P}(B)=\frac{1}{24} \\ & \mathrm{P}(A)+\mathrm{P}(B)=\frac{1}{24}+\frac{3}{8} \\ & \mathrm{P}(A)+\frac{1}{24 \mathrm{P}(A)}=\frac{5}{12} \\ & 24 \mathrm{P}(A))^{-10 P(A)+1=0} \\ & (6 \mathrm{P}(A)-1)(\mathrm{PP}(A)-1)=0) \end{aligned}$	M1(AO1.1a) M1 (AO1.1) M1 (AO3.1a) A1(AO1.1) A1(AO1.1) [5]	Attempt equation in one P Correct quadratic	

					This was the most difficult question on the paper. Those who drew Venn diagrams and put the correct probabilities in the correct places did better than those who tried to repeat the method in part (ii). There were few fully correct solutions, but many found one of the correct limits.
	Total	10			

