1.

A curve has parametric equations $x=t+\frac{2}{t}$ and $y=t-\frac{2}{t}$, for $t \neq 0$.
(a) $\quad \frac{\mathrm{d} y}{}{ }^{\text {(and }} \frac{}{\mathrm{d} x}$ in terms of t, giving your answer in its simplest form.
(b) Explain why the curve has no stationary points.
(c) By considering $x+y$, or otherwise, find a cartesian equation of the curve, giving your answer in a form not involving fractions or brackets.
2. The parametric equations of a curve are

$$
x=2+3 \sin \theta \text { and } y=1-2 \cos \theta \text { for } 0 \leqslant \theta \leqslant \frac{1}{2} \pi
$$

i. Find the coordinates of the point on the curve where the gradient is $\frac{1}{2}$.
ii. Find the cartesian equation of the curve.
3. A curve has parametric equations $x=1-\cos t, y=\sin t \sin 2 t$, for $0 \leqslant t \leqslant \pi$.
i. Find the coordinates of the points where the curve meets the x-axis.
ii. Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \cos 2 t+2 \cos ^{2} t$. Hence find, in an exact form, the coordinates of the stationary points.
iii. Find the cartesian equation of the curve. Give your answer in the form $y=\mathrm{f}(x)$, where $f(x)$ is a polynomial.
iv. Sketch the curve.
4. The parametric equations of a curve are given by $x=2 \cos \theta$ and $y=3 \sin \theta$ for $0 \leq \theta<2 \pi$.

(a) $\mathrm{d} y$

Find $\mathrm{d} x$ in terms of θ.

The tangents to the curve at the points P and Q pass through the point $(2,6)$.
(b) Show that the values of θ at the points P and Q satisfy the equation
$2 \sin \theta+\cos \theta=1$.
(c) Find the values of θ at the points P and Q.
5.

A curve is defined by the parametric equations $x=\frac{2 t}{1+t}$ and $y=\frac{t^{2}}{1+t}, t \neq-1$.
(a) (i) Show that the curve passes through the origin.
(ii) Find the y-coordinate when $x=1$.
(b) Show that the area enclosed by the curve, the x-axis and the line $x=1$ is given by

$$
\begin{equation*}
\int_{0}^{1} \frac{2 t^{2}}{(1+t)^{3}} \mathrm{~d} t \tag{5}
\end{equation*}
$$

(c) In this question you must show detailed reasoning.

Hence use an appropriate substitution to find the exact area enclosed by the curve, the x-axis and the line $x=1$.
6.

The diagram shows the curve with parametric equations $x=\ln \left(t^{2}-4\right), \quad y=\frac{4}{t^{2}}$, where $t>2$.

The shaded region R is enclosed by the curve, the x-axis and the lines $x=\ln 5$ and $x=\ln 12$.
(a) Show that the area of R is given by
$\int_{a}^{b} \frac{8}{t\left(t^{2}-4\right)} \mathrm{d} t$
where a and b are constants to be determined.
(b) In this question you must show detailed reasoning.

Hence find the exact area of R, giving your answer in the form In k, where k is a constant to be determined.
(c) Find a cartesian equation of the curve in the form $y=\mathrm{f}(x)$.
7. A curve has parametric equations $x=\frac{1}{t}-1$ and $y=2 t+\frac{1}{t^{2}}$.
i. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t, simplifying your answer.
ii. Find the coordinates of the stationary point and, by considering the gradient of the curve on either side of this point, determine its nature.
iii. Find a cartesian equation of the curve.
8.
i. Express $\frac{x+8}{x(x+2)}$ in partial fractions.
ii. By first using division, express $\frac{7 x^{2}+16 x+16}{x(x+2)}$ in the form $P+\frac{Q}{x}+\frac{R}{x+2}$.

A curve has parametric equations $x=\frac{2 t}{1-t}, y=3 t+\frac{4}{t}$.
iii. Show that the cartesian equation of the curve is $y=\frac{7 x^{2}+16 x+16}{x(x+2)}$.
iv. Find the area of the region bounded by the curve, the x-axis and the lines $x=1$ and x $=2$. Give your answer in the form $L+M \ln 2+N \ln 3$.
9. The parametric equations of a curve are

$$
x=\frac{1}{\sqrt{2+t}}_{\text {and } y=\beta-3 t \text { for }-2<t \leq 0 . ~}^{\text {. }}
$$

(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
(ii) Find the coordinates of the stationary point on the curve and determine its nature.
(iii) State the range of values of x and the range of values of y.
(iv) Sketch the curve.
10. A curve is defined, for $t \geq 0$, by the parametric equations

$$
x=t, \quad y=t^{3}
$$

(a) Show that the equation of the tangent at the point with parameter t is

$$
\begin{equation*}
2 y=3 t x-t^{3} \tag{4}
\end{equation*}
$$

(b) In this question you must show detailed reasoning.

It is given that this tangent passes through the point $A\left(\frac{19}{12},-\frac{15}{8}\right)$ and it meets the x-axis at the point B.

Find the area of triangle $O A B$, where O is the origin.
11. A curve has parametric equations

$$
x=2 \sin t, y=\cos 2 t+2 \sin t
$$

for $-\frac{1}{2} \pi \leqslant t \leqslant \frac{1}{2} \pi$
i. Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=1-2 \sin t$ and hence find the coordinates of the stationary point.
ii. Find the cartesian equation of the curve.
iii. State the set of values that x can take and hence sketch the curve.
12.

The diagram shows the curve C with parametric equations

$$
x=\frac{1}{4} \sin t, y=t \cos t
$$

where $0 \leq t \leq k$.
(a) Find the value of k.
(b) Find $\frac{\mathrm{d} y}{\mathrm{~d} t}$ in terms of t.

The maximum point on C is denoted by P.
(c) Using your answer to part (b) and the standard small angle approximations, find an approximation for the x-coordinate of P.
(d) (i) Show that the area of the finite region bounded by C and the x-axis is given by

$$
b \int_{0}^{a} t(1+\cos 2 t) \mathrm{d} t
$$

where a and b are constants to be determined.
(ii) In this question you must show detailed reasoning.

Hence find the exact area of the finite region bounded by C and the x-axis.

Question		Answer/Indicative content	Marks	Part marks and guidance	
1	a	$\begin{aligned} & \frac{\mathrm{d} x}{\mathrm{~d} t}=1-2 t^{-2} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} t}=1+2 t^{-2} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1+2 t^{-2}}{1-2 t^{-2}}=\frac{\frac{t}{}^{2}+2}{t^{t^{2}-2}} \\ & t^{2} \end{aligned}$	$B 1$ $(A O$ 1.1) $B 1$ $(A O 1.1)$ M1 $(A O 1.1 a)$ $A 1$ $(A O 1.1)$ $[4]$	Correct Any equivalent form $\frac{\mathrm{d} x}{\mathrm{~d} t}$ Any equivalent form Correct Division must be correct way around $\frac{\mathrm{d} y}{\mathrm{~d} t}$ Attempt correct method to combine their derivatives Allow any simplified equivalent such as $1+\frac{4}{t^{2}-2}$ correct derivative Examiner's Comments Most candidates gained at least 3 marks for obtaining a correct expression for the derivative, but the subsequent simplification proved to be more challenging. Candidates who worked with fractions tended to be more successful than those who worked with negative indices. The most common error was 'cancelling' just a single term in the numerator and denominator.	

Question		Answer/Indicative content	Marks	Part marks and guidance	
2	i	$\begin{aligned} & \text { their } \frac{\frac{\mathrm{d} y}{\mathrm{~d} \theta}}{\mathrm{~d} x} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 \sin \theta}{3 \cos \theta} \end{aligned}$ their $\frac{d y}{d x}=\frac{1}{2}$ $\tan \theta=\frac{3}{4}$ $(3.8,-0.6)$ or $\left(\frac{19}{5},-\frac{3}{5}\right)$ or $x=3.8, y=-0.6$	M1 A1 M1 A1 A1	If $\tan \theta=\frac{3}{4}$ not seen, award this A1 only if coords are correct Examiner's Comments This was generally done well though a few were unable to manipulate the equation $\frac{2}{3} \tan \theta=\frac{1}{2}$ into its simpler version $\tan \theta=\frac{3}{4}$. Apart from rounding errors, the actual coordinates were then relatively easy to find.	
	ii	Manipulating equations into form $\sin \theta=f(x)$ and $\cos \theta=g(y)$ and then using $\sin ^{2} \theta+\cos ^{2}$ $\theta=1$	M1	If part (ii) is attempted first, and then part (i), allow B1 for obtaining $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4(x-2)}{9(y-1)}$ M1 for equating their $\frac{\mathrm{d} y}{\mathrm{~d} x} \text { to } \frac{1}{2}$	the following marks in part (i): -

Question		Answer/Indicative content	Marks	Part marks and guidance		

| Question | | Answer/ndicative content | Marks | Part marks and guidance | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |, | i |
| :--- |
| 3 |

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Answer/Indicative content \& Marks \& Part mark \& d guidance \\
\hline ii \& \(\left(1-\frac{1}{\sqrt{3}}, \frac{4}{3 \sqrt{3}}\right)\) oe isw \& A1 \& if A0, A0, allow A1 for both \(x\) values correct \& \begin{tabular}{l}
Examiner's Comments \\
Many candidates knew what to do to obtain the required result, and there were many examples of clear, well-structured solutions. Most realised the need to resolve the double angle for the next part of the question, and many made no further progress. Only the best candidates went on to obtain both pairs of coordinates correctly.
\end{tabular} \\
\hline iii \& \begin{tabular}{l}
\(y=2\left(1-\cos ^{2} t\right) \cos t\) oe \\
may be implicit equation, may be implied by partial substitution for cost \(\operatorname{eg}(1-x)^{2}+\frac{y}{2 \cos t}=1\)
\[
y=2\left(1-(1-x)^{2}\right)(1-x)
\]
\end{tabular} \& M1

M1 \& \begin{tabular}{l}
or $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 \cos ^{2} t-2$

or $\frac{\mathrm{d} y}{\mathrm{~d} x}=6(1-x)^{2}-2$

 \&

use of double angle formula (and Pythagoras) to obtain expression for y or $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms cost only;

substitution of $\cos t= \pm 1 \pm x$ to obtain expression in terms of x only allow sign errors, bracket errors or minor slips in arithmetic eg omission of 2 for these method marks
\end{tabular}

\hline
\end{tabular}

| Question | | Answer/Indicative content | Marks | Part marks and guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |

Question	Answer/Indicative content	Marks	Part marks and guidance		
c	Use $R \sin (\theta+\alpha)$ on $2 \sin \theta+$ $\cos \theta$ $R \sin \alpha=1, R \cos \alpha=2$ Obtain $\alpha=0.4636$ and $R=\sqrt{5}$ Use correct order of operations to solve $\sqrt{5} \sin (\theta+0.4636)=1$ Obtain 0 Obtain 2.21	M1(AO3. 1a) A1(AO1. 1) M1 (AO1. 1) B1(AO2. 2a) A1(AO1. 1) [5]	Should go as far as finding R and α Allow alternative forms Attempt to solve their $R \sin (\theta+\alpha$) Or better (2.214345)	OR M1 Square and use $\sin ^{2} \theta+$ $\cos ^{2} \theta=1$ A1 $4 \sin ^{2} \theta+$ $4 \sin \theta(1-$ $2 \sin \theta)$ $+\left(1-\sin ^{2} \theta\right.$) $=1$ M1 Simplify and solve $5 \sin ^{2} \theta-$ $4 \sin \theta=0$	
	Total	11			

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Question} \& Answer/Indicative content \& Marks \& \multicolumn{2}{|c|}{Part marks and guidance}

\hline 5 \& a

a \& \begin{tabular}{l}
(a) when $x=0, t=0$ and hence $y=0$

(b) when $x=1, t=1$ and hence $y=0.5$

 \&

E1(AO2.

4)

[1]

B1(AO1.

1)

[1]

 \&

Justify (0,

0)

convincingl

y
\end{tabular}

Obtain $y=$
0.5

\hline \& b \& $$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{2}{(1+t)^{2}}
$$

$$
\begin{aligned}
\int \frac{t^{2}}{1+t} \mathrm{~d} x & =\int \frac{t^{2}}{1+t} \times \frac{2}{(1+\mathrm{t})^{2}} \mathrm{~d} t \\
& =\int \frac{2 t^{2}}{(1+t)^{3}} \mathrm{~d} t
\end{aligned}
$$ \& \[

$$
\begin{array}{|c}
\mathrm{M} 1(\mathrm{AO} 2 . \\
1) \\
\mathrm{A} 1(\mathrm{AO} 2 . \\
1) \\
\mathrm{M} 1 \text { (AO2. } \\
\text { 1) } \\
\mathrm{A} 1(\mathrm{AO} 2 . \\
1) \\
\mathrm{B} 1(\mathrm{AO} 2 . \\
4) \\
{[5]}
\end{array}
$$
\] \& \&

\hline
\end{tabular}

Question	Answer/Indicative content	Marks	Part marks and guidance		
C	DR use $u=1+t$ giving $\mathrm{d} u=\mathrm{d} t$ $\begin{aligned} & \int \frac{2 t^{2}}{(1+t)^{3}} \mathrm{~d} t=\int \frac{2(u-1)^{2}}{u^{3}} \mathrm{~d} u \\ & =\int 2 u^{-1}-4 u^{-2}+2 u^{-3} \mathrm{~d} u \\ & =\left[2 \ln u+4 u^{-1}-u^{-2}\right]_{1}^{2} \\ & =(2 \ln 2+2-0.25)-(2 \ln 1+ \\ & 4-1) \\ & =2 \ln 2-\frac{5}{4} \end{aligned}$	$\begin{gathered} \text { E1(AO1. } \\ \text { 1a) } \\ \text { M1(AO1. } \\ \text { 1a) } \\ \\ \text { A1(AO1. } \\ \text { 1) } \\ \\ \text { M1(AO1. } \\ \text { 1a) } \\ \text { M1(AO1. } \\ \text { 1a) } \\ \text { A1(AO1. } \\ \text { 1) } \\ \text { [6] } \end{gathered}$	Must be stated explicitly Attempt to change integrand to function of u Obtain correct integrand Attempt integration Attempt use of limits $u=1$, 2 Obtain correct exact area	Any equivalent form Allow any exact equiv	
	Total	13			

| Question | | Answer/Indicative content | Marks | Part marks and guidance | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& Answer/Indicative content \& Marks \& Part marks a \& d guidance \\
\hline 7 \& i \& \[
\begin{aligned}
\& \frac{\mathrm{d} v}{\mathrm{~d} t}=2(+)-\frac{2}{t^{t}} ; \frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{1}{t^{2}} \text { oe soi ISW } \\
\& \frac{2}{t}-2 t^{2} \mathrm{or}-2\left(t^{2}-\frac{1}{t}\right), \frac{2 t^{3}-2}{-t},-t^{2}\left(2-\frac{2}{t^{3}}\right) \mathrm{oe}
\end{aligned}
\] \& \[
\begin{gathered}
\mathrm{B} 1, \mathrm{~B} 1 \\
\mathrm{~B} 1
\end{gathered}
\] \& \begin{tabular}{l}
ISW. Must not involve (implied) 'triple-deckers' e.g. fractions with neg powers... \\
Examiner's Comments \\
In general, apart from the derivative of \(\frac{1}{t}\) being \(\operatorname{Int}\) in some cases, the differentiation was handled competently. The question asked for the answer to be simplified and many alternatives were accepted - though not fractions with negative powers involved in numerator and denominator.
\end{tabular} \& \[
\ldots \text { e.g. } \frac{2-2 t^{-3}}{-t^{2}}
\] \\
\hline \& ii
ii

ii \& \begin{tabular}{l}
(Any of their expressions for $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=0$ or their $\frac{\mathrm{d} y}{\mathrm{~d} t}=0$

$t=1 \rightarrow($ stationary point $)=$ $(0,3)$

Consider values of x on each side of their critical value of x which lead to

finite values of $\frac{\mathrm{d} y}{\mathrm{~d} x}$

 \&

M1

A1

M1
\end{tabular} \& Not awarded if $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is wrong in (i) and used here BUT allow recovery if only explicitly considering

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=0
$$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& Answer/Indicative content \& Marks \& \multicolumn{2}{|c|}{Part marks and guidance}

\hline 8 \& i
i

i \& $$
\begin{aligned}
& \frac{A}{x}+\frac{B}{x+2} \\
& x+8=A(x+2)+B x \text { soi }
\end{aligned}
$$

\[
A=4 and B=-3

\] \& | B1 |
| :--- |
| M1 |
| A1 | \& | allow one sign error |
| :--- |
| Examiner's |
| Comments \square |
| Most recognised the correct form of partial fractions and successfully cleared the fractions to produce a fully correct solution. | \& | award if only implied by answer |
| :--- |
| clearing fractions successfully |
| if M0, B1 for each value www |

\hline \& ii ${ }_{\text {ii }}$ \& | quotient (P) is 7 |
| :--- |
| $2 x+16$ seen $7+\frac{8}{x}-\frac{6}{x+2}$ | \& | B1 |
| :--- |
| B1 |
| B1 | \& | if $\mathrm{B} 0, \mathrm{~B} 1$ for $Q=8$ and B 1 for $R=-6 w w w$ |
| :--- |
| Examiner's Comments |
| Most candidates used long division and successfully found the quotient and the remainder. Many then used their answer to part (i) to produce a correct solution. A variety of other approaches were also successful, but a significant minority of those who equated coefficients went astray in the algebra. |
| A small number of candidates tried to divide by x and $x+2$ separately, and were rarely successful. | \& eg as remainder or in division chunking or allow $P=7, Q=8, R=-$ 6

\hline \& iii \& $t=\mathrm{f}(x)$ \& M1* \& $$
\begin{aligned}
& \text { from } x=\frac{2 t}{1-t} ; \\
& \text { MO for } t=g(y)
\end{aligned}
$$ \&

\hline
\end{tabular}

Question		Answer/Indicative content	Marks	Part marks and guidance	
	iii	$y=\frac{7 x^{2}+16 x+16}{x(x+2)}$	A1		at least one correct, constructive, intermediate step shown if MOMO, SC2 for substitution of $x=\frac{2 t}{1-t}$ in RHS of given equation and completion with at least two correct, constructive intermediate steps to $y=3 t+\frac{4}{t} \mathrm{www}$
	iv iv iv iv	$\begin{aligned} & \int \text { their }\left(P+\frac{Q}{x}+\frac{R}{x+2}\right)[\mathrm{d} x] \\ & \mathrm{F}[x]=7 x+8 \ln x-6 \ln (x+2) \\ & \mathrm{F}[2]-\mathrm{F}[1] \\ & 7-4 \ln 2+6 \ln 3 \end{aligned}$	M1* A1ft M1dep* A1	where P, Q and R are constants obtained in (ii) allow recovery from omission of brackets in subsequent working Examiner's Comments There were many excellent responses to this part of the question. Most candidates spotted the link with part (ii) and went on to earn three or four marks. Those who started from scratch were almost never successful.	allow omission of $\mathrm{d} x$ if M0, SC1 for $P x+Q \ln x+R \ln (x+2)$ where constants are unspecified or arbitrary
		Total	14		

Question	Answer/Indicative content	Marks B1	Part marks and guidance	
iv		B1 [1]	curve with maximum in $1^{\text {st }}$ quadrant and horizontal asymptote in $4^{\text {th }}$ quadrant drawn for x $\geq k$, where $k>0$ Examiner's Comments Only a very small minority sketched the curve successfully. A significant proportion of those who were successful had not managed full marks in the previous parts of the question.	
	Total	10		

	Question	Answer/Indicative content	Marks	Part marks and guidance	

Question	Answer/Indicative content	Marks	Part marks	d guidance
ii ii ii	$(y=) 1-2 \sin ^{2} t+2 \sin t$ substitution of $\sin t=1 / 2 x$ to eliminate t $y=1+x-$ $1 / 2 x^{2}$ oe isw	B1 M1 A1	may be awarded after correct substitution for x eg $(y=) 1-x^{2} /_{4}-\sin ^{2} t+$ $2 \sin t$ or B3 www Examiner's Comments Those who attempted to find a polynomial equation often went astray in the substitution: $x^{2}=(2 \sin t)^{2}=$ $2 \sin ^{2} t$ was a common error, leading to $y=1-x^{2}+x$. It was not always clear what substitution candidates were making: in cases where it went wrong a method mark was sometimes lost. Weaker candidates opted for an equation involving $\arcsin \left(\frac{x}{2}\right.$); this nearly always resulted in zero in part (iii).	or $(y=) x+\cos 2 t$ substitution of $t=\sin ^{-1}(x / 2)$ to eliminate t $y=x+\cos 2\left(\sin ^{-1}(x / 2)\right) \text { oe }$ isw
iii iii	$\begin{aligned} & -2 \leq x \leq 2 \text { or } x \geq-2 \text { (and) } x \\ & \geq 2 \text { or }\|x\| \leq 2 \end{aligned}$ sketch of negative quadratic with endpoints in $1^{\text {st }}$ and $3^{\text {rd }}$ quadrants	B1 M1	cao RH point must be to the right of the maximum	

Question		Answer/Indicative content positive y-intercept and one distinguishing feature isw	Marks A1	Part marks and guidance	
	iii			Examiner's Comments Some candidates were able to deduce the range of values for x, but more often than not did not take the hint and relate this to their sketch. Only the best candidates produced a graph of the correct shape with endpoints in the correct quadrants, and only a handful identified a correct distinguishing feature for the third mark.	one from: endpoints $(-2,-3)$ and $(2,1)$, vertex at $(1,11 / 2)$, y - intercept is $(0,1), x$ intercept is $(1-\sqrt{ } 3,0)$
		Total	11		

Question		Answer/Indicative content	Marks	Part marks	nd guidance
12	a	$\begin{aligned} & y=0 \Rightarrow(t=0 \text { or }) \operatorname{cost} t=0 \\ & k=\frac{1}{2} \pi \end{aligned}$	$\begin{gathered} \text { M1 } \\ (\mathrm{AO} 1.1 \mathrm{a}) \\ \mathrm{A} 1 \\ (\mathrm{AO} 2.2 \mathrm{a}) \\ {[2]} \end{gathered}$	$\begin{aligned} & \text { Setting } y= \\ & 0 \end{aligned}$	
	b	$\frac{\mathrm{d} y}{\mathrm{~d} t}=\cos t-t \sin t$	$\begin{gathered} \text { M1 } \\ \text { (AO1.1) } \\ \text { A1 } \\ (\mathrm{AO} 1.1) \\ {[2]} \end{gathered}$	Attempt at product rule - allow sign errors	
	c	$\cos t-t \sin t=0 \Rightarrow\left(1-\frac{1}{2} t^{2}\right)-t(t)=0$ $\begin{aligned} & \frac{3}{2} t^{2}=1 \Rightarrow t=\ldots \\ & t=\sqrt{\frac{2}{3}} \\ & \mathrm{x} \approx 0.2 \end{aligned}$	$\begin{gathered} \text { M1* } \\ (A O 2.1) \\ \\ \\ \text { dep*M1 } \\ \text { (AO1.1) } \\ \text { A1 } \\ \text { (AO1.1) } \\ \text { A1 } \\ (A O 2.2 a) \\ {[4]} \end{gathered}$		

Question	Answer/Indicative content	Marks		Part marks and guidance
		$\begin{aligned} & \hline \text { A1 } \\ & {[5]} \end{aligned}$	Correct first application Complete integration correct Use of 0 and their k in their integrated expression Or exact equivalent	
	Total	16		

