A curve has parametric equations
$$x = t + \frac{2}{t}$$
 and $y = t - \frac{2}{t}$, for $t \neq 0$.
(a) $\frac{dy}{dx}$ in terms of *t*, giving your answer in its simplest form.
(b) Explain why the curve has no stationary points. [2]

- (c) By considering x + y, or otherwise, find a cartesian equation of the curve, giving your answer in a form not involving fractions or brackets. [4]
- 2. The parametric equations of a curve are

1.

$$x = 2 + 3 \sin \theta$$
 and $y = 1 - 2 \cos \theta$ for $0 \le \theta \le \frac{1}{2}\pi$.

- i. Find the coordinates of the point on the curve where the gradient is $\frac{1}{2}$.
- ii. Find the cartesian equation of the curve.
- 3. A curve has parametric equations $x = 1 \cos t$, $y = \sin t \sin 2t$, for $0 \le t \le \pi$.
 - i. Find the coordinates of the points where the curve meets the *x*-axis.

[3]

[5]

[2]

- ii. Show that $\frac{dy}{dx} = 2\cos 2t + 2\cos^2 t$. Hence find, in an exact form, the coordinates of the stationary points.
 - [7]
- iii. Find the cartesian equation of the curve. Give your answer in the form y = f(x), where f(x) is a polynomial.

[3]

[2]

iv. Sketch the curve.

21

- 4. The parametric equations of a curve are given by $x = 2\cos\theta$ and $y = 3\sin\theta$ for $0 \le \theta < 2\pi$.
 - (a) $\frac{dy}{dx}$ Find $\frac{dy}{dx}$ in terms of θ .

The tangents to the curve at the points P and Q pass through the point (2, 6).

- (b) Show that the values of θ at the points *P* and *Q* satisfy the equation $2\sin\theta + \cos\theta = 1.$ [4]
- (c) Find the values of θ at the points *P* and *Q*.

(ii) Find the y-coordinate when x = 1.

5. A curve is defined by the parametric equations $x = \frac{2t}{1+t}$ and $y = \frac{t^2}{1+t}$, $t \neq -1$. (a) (i) Show that the curve passes through the origin. [1]

(b) Show that the area enclosed by the curve, the x-axis and the line x = 1 is given by

$$\int_{0}^{1} \frac{2t^2}{\left(1+t\right)^3} \,\mathrm{d}t.$$
 [5]

[2]

[5]

[1]

(c) In this question you must show detailed reasoning.

Hence use an appropriate substitution to find the exact area enclosed by the curve, the *x*-axis and the line x = 1. [6]

quations $x = \ln(t^2 - 4), \quad y = \frac{4}{t^2}$, where

The diagram shows the curve with parametric equations t > 2.

The shaded region *R* is enclosed by the curve, the *x*-axis and the lines $x = \ln 5$ and $x = \ln 12$. (a) Show that the area of *R* is given by

$$\int_{a}^{b} \frac{8}{t(t^2-4)} \mathrm{d}t,$$

where *a* and *b* are constants to be determined.

[4]

[8]

(b) In this question you must show detailed reasoning.

Hence find the exact area of R, giving your answer in the form $\ln k$, where k is a constant to be determined.

(c) Find a cartesian equation of the curve in the form y = f(x). [3]

7. A curve has parametric equations $x = \frac{1}{t} - 1$ and $y = 2t + \frac{1}{t^2}$.

- dy
- i. Find $\overline{\mathbf{dx}}$ in terms of *t*, simplifying your answer.

- [3]
- ii. Find the coordinates of the stationary point and, by considering the gradient of the curve on either side of this point, determine its nature.
- iii. Find a cartesian equation of the curve.

[2]

[4]

8.

i.

Express
$$\frac{x+8}{x(x+2)}$$
 in partial fractions.

[3]

ii. By first using division, express
$$\frac{7x^2 + 16x + 16}{x(x+2)}$$
 in the form $P + \frac{Q}{x} + \frac{R}{x+2}$.

A curve has parametric equations $x = \frac{2t}{1-t}, y = 3t + \frac{4}{t}$.

iii. Show that the cartesian equation of the curve is
$$y = \frac{7x^2 + 16x + 16}{x(x+2)}$$
.

[4]

iv. Find the area of the region bounded by the curve, the *x*-axis and the lines x = 1 and x = 2. Give your answer in the form $L + M \ln 2 + N \ln 3$.

[4]

$$x = \frac{1}{\sqrt{2+t}} \text{ and } y = t^8 - 3t \text{ for } -2 < t \le 0.$$
(i)
$$\frac{dy}{dx} \text{ in terms of } t.$$

(ii) Find the coordinates of the stationary point on the curve and determine its nature. [4]

(iii) State the range of values of *x* and the range of values of *y*. [2]

10. A curve is defined, for $t \ge 0$, by the parametric equations

$$x = t^{\beta}, \qquad y = t^{\beta}.$$

(a) Show that the equation of the tangent at the point with parameter *t* is

$$2y = 3tx - t^{\beta}.$$
 [4]

[3]

(b) In this question you must show detailed reasoning.

It is given that this tangent passes through the point $A\left(\frac{19}{12}, -\frac{15}{8}\right)$ and it meets the *x*-axis at the point *B*.

Find the area of triangle *OAB*, where *O* is the origin. [7]

$$x = 2 \sin t, y = \cos 2t + 2 \sin t$$

for $-\frac{1}{2}\pi \le t \le \frac{1}{2}\pi$
i. Show that $\frac{dy}{dx} = 1 - 2 \sin t$ and hence find the coordinates of the stationary point.
ii. Find the cartesian equation of the curve.

[5]

[3]

[3]

12.

The diagram shows the curve $\ensuremath{\mathcal{C}}$ with parametric equations

$$x = \frac{1}{4}\sin t, \quad y = t\cos t,$$

where $0 \le t \le k$.

(a) Find the value of k.

[2]

(b) $\frac{dy}{dt}$ in terms of *t*.

The maximum point on C is denoted by P.

- (c) Using your answer to part (b) and the standard small angle approximations, find an approximation for the *x*-coordinate of *P*.
- (d) (i) Show that the area of the finite region bounded by C and the x-axis is given by

$$b\int_0^a t(1+\cos 2t)\,\mathrm{d}t,$$

where *a* and *b* are constants to be determined.

(ii) In this question you must show detailed reasoning.Hence find the exact area of the finite region bounded by *C* and the *x*-axis.

END OF QUESTION paper

[2]

[4]

[3]

Question	Answer/Indicative content	Marks		Part marks a	nd guidance
Question 1 a	Answer/Indicative content $\frac{dx}{dt} = 1 - 2t^{-2}$ $\frac{dy}{dt} = 1 + 2t^{-2}$ $\frac{dy}{dx} = \frac{1 + 2t^{-2}}{1 - 2t^{-2}} = \frac{\frac{t^2 + 2}{t^2}}{\frac{t^2 - 2}{t^2}}$ $\frac{dy}{dx} = \frac{t^2 + 2}{t^2 - 2}$	Marks B1 (AO 1.1) B1 (AO 1.1) M1 (AO 1.1a) A1 (AO 1.1)	Correct $\frac{dx}{dt}$ Correct $\frac{dy}{dt}$	Part marks and Any equivalent form Any equivalent form Division must be correct way around	nd guidance
		[4]	Attempt correct method to combine their derivatives Obtain correct derivative Examiner's Co Most candidat least 3 marks a correct expr derivative, but subsequent si proved to be r challenging. C who worked wit tended to be r successful that worked with n indices. The n error was 'can single term in and denomina	tes gained at for obtaining ression for the table implification more Candidates with fractions more an those who egative most common acelling' just a the numerator	

Question	Answer/Indicative content	Marks	Part marks and guidance		
b	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow t^2 + 2 = 0$	E1ft (AO 2.2a)	Justify <i>t</i> ² + 2 = 0 for stat point	Must state that gradien $\frac{dv}{dx}$) = t (or 0 (cannot be implied by method) then equate their numerator to 0	
	$t^2 \ge 0$, hence $t^2 + 2 = 0$ has no solutions, hence curve has no stationary points	E1 (AO 2.4)	Justify no stationary points	Allow use of a gradient that is no longer a fraction	
		[2]		Explain why there are no solutions eg referring to $t^2 + 2 \ge 2$ eg t^2 is always positive (as $t \ne 0$ given) eg $t^2 + 2 =$ 0 has no real roots and conclude with 'no stationary points' Must now be from a	
			Eveniner's C	fully correct derivative only	
			Examiner's Control Examiner's Control Examiner's Control Example 1 Control Example 1 Control Example 2	andidates attempt the	

Qu	iestio	n	Answer/Indicative content	Marks	Part marks and guidance		
				just equating t to 0 examiner see some just this, such as a that the gradie	g. Rather than the derivative s expected to ification for a statement ent is 0 at a nt. Candidates bected to he equation t^2 o real roots ding that this vere no		
		С	x + y = 2t hence $t = \frac{1}{2}(x + y)$	B1 (AO 1.1)	Correct expression for <i>t</i>	Any correct equation involving <i>t</i> along with <i>x</i> and/or <i>y</i> where <i>t</i> only appears	
			$x = \frac{1}{2}(x+y) + \frac{2}{\frac{1}{2}(x+y)}$	M1 (AO 1.2)	Substitute for <i>t</i> into either equation	Expression for <i>t</i> must be correct Could be using	
			$2x(x + y) = (x + y)^{2} + 8$ $2x^{2} + 2xy = x^{2} + 2xy + y^{2} + 8$ $x^{2} - y^{2} = 8$	M1 (AO 3.1a) A1 (AO 1.1)	Attempt rea rrangement Correct equation	attempt (possibly no longer correct) at a rearranged parametric equation eg $xt - t^2 = 2$ As far as requested form	
				[4]		Any correct three term	

Question	Answer/Indicative content	Marks	Part marks and guidance
Question	Answer/Indicative content	Marks	equivalentAllow A1 $y=\pm\sqrt{x^2-8}$ fQURGA0 ifnot ±Examiner's CommentsMany candidates were ableto use the hint given in thequestion to produce $x + y =$ 2t but a number were thenunsure how to make anyfurther progress. Othersappreciated that they couldnow use this equation toeliminate t from one of thegiven parametric equations,but errors when rearrangingto the requested from werecommon, demonstrating a
	Total	10	easily eliminated.

Que	stion	Answer/Indicative content	Marks	Part marks and guidance			
2	i	their $\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$	M1				
	i	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\sin\theta}{3\cos\theta}$	A1				
	i	their $\frac{dy}{dx} = \frac{1}{2}$	M1				
	i	$\tan \theta = \frac{3}{4}$ (3.8,-0.6) or $\left(\frac{19}{5}, -\frac{3}{5}\right)$ or $x = 3.8, y = -0.6$	A1 A1	If $\tan \theta = \frac{3}{4}$ not seen, award this A1 only if coords are correct Examiner's Comments This was generally done well though a few were unable to manipulate the equation $\frac{2}{3} \tan \theta = \frac{1}{2}$ into its simpler version $\tan \theta = \frac{3}{4}$. Apart from rounding errors, the actual coordinates were then relatively easy to find.			
	ii	Manipulating equations into form sin θ = f (x) and cos θ = g(y) and then using sin ² θ + cos ² θ = 1	M1	If part (ii) is attempted first, and then part (i), allow B1 for obtaining $\frac{dy}{dx} = \frac{4(x-2)}{9(y-1)}$ M1 for equating their $\frac{dy}{dx}$ to $\frac{1}{2}$	the following marks in part (i): –		

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
	$\frac{(x-2)^2}{9} + \frac{(1-y)^2}{4} = 1 \text{ oe www ISW}$ Accept e.g. $\left(\frac{x-2}{3}\right)^2$ $4x^2 + 9y^2 - 16x - 18y - 11 = 0$	A1	A1 for obtaining $9y - 8x =$ -7 M1 for eliminating <i>x</i> or <i>y</i> from above eqn A1 for (3.8,-0.6) Examiner's Comments A large number of candidates assumed that the required cartesian equation had to be linear, or that inverse trigonometrical functions would be acceptable in the answer. A few said that $\cos \theta = \frac{y-1}{2}$ and then used it in the equation $\cos^2 \theta + \sin^2 \theta =$ 1; although $\left(\frac{y-1}{2}\right)^2$ and $\left(\frac{1-y}{2}\right)^2$ were equivalent at that stage, an earlier mistake had been seen and was consequently penalised.	and their Cartesian equation
	Total	7		

Qı	uestion	Answer/Indicative content	Marks	Part marks a	nd guidance
3	i	sin <i>t</i> sin <i>2t</i> = 0 oe seen	M1		NB <i>t</i> = 0, ½π, π
	i	(0, 0) (1, 0) and (2, 0) or <i>x</i> = 0, <i>x</i> = 1, <i>x</i> = 2 cao	A2	A1 for two of three correct	deduct 1 mark if all three correct plus extra values if A0 , allow SC1 for $t = 0$, $\frac{1}{2}\pi$, π if unsupported, full marks for all three values correct
					Examiner's Comments
					Most candidates set $y = 0$, but few went on to successfully find all three values. Surprisingly, (0, 0) was almost as commonly omitted as (1, 0) and (2, 0).
	ii	$\left[\frac{\mathrm{d}y}{\mathrm{d}t}\right] = 2\sin t \cos 2t + \cos t \sin 2t$	B1	or $4\sin t \cos^2 t - 2\sin^3 t$	
	ii	$\frac{(2\sin t\cos 2t + \cos t\sin 2t)}{\sin t}$	M1	allow sign errors and/or one incorrect coefficient	
		or			
		$\frac{(4\sin t\cos^2 t - 2\sin^3 t)}{\sin t}$			
	ii	substitution of $\sin 2t = 2\sin t$ $\cos t$ in their $(2\sin t\cos 2t + \cos t\sin 2t)$ $\sin t$	M1	may be seen before differentiation	
		and completion to			
	ii	2cos2 <i>t</i> + 2cos ² <i>t</i> www NB AG	A1	at least one correct intermediate step needed	
	ii	eg $2(2\cos^2 t - 1) + 2\cos^2 t = 0$ or $2\cos^2 t + 2\times\frac{1}{2}(1 + \cos^2 t)$ = 0	M1	use of double angle formula to obtain quadratic equation in eg cos <i>t</i> or linear equation in cos2 <i>t</i> ; may be seen before differentiation	mark intent: allow sign error, bracket error, omission of one coefficient
	ii	$(1 + \frac{1}{\sqrt{3}}, \frac{-4}{3\sqrt{3}})$ oe isw	A1		eg $(\frac{\sqrt{3}+3}{3}, -\frac{4\sqrt{3}}{9})$

Question	Answer/Indicative content	Marks	Part marks and guidance			
ii	$(1 - \frac{1}{\sqrt{3}}, \frac{4}{3\sqrt{3}})$ oe isw	A1	if A0, A0, allow A1 for both <i>x</i> values correct	Examiner's Comments Many candidates knew what to do to obtain the required result, and there were many examples of clear, well-structured solutions. Most realised the need to resolve the double angle for the next part of the question, and many		
	$y = 2(1 - \cos^2 t) \cos t$ oe may be implicit equation, may be implied by partial substitution for $\cos t$	M1	or $\frac{dy}{dx} = 6\cos^2 t - 2$	made no further progress. Only the best candidates went on to obtain both pairs of coordinates correctly. use of double angle formula (and Pythagoras) to obtain expression for y or $\frac{dy}{dx}$ in terms cost only;		
	eg $(1-x)^2 + \frac{y}{2\cos t} = 1$ y = 2(1 - (1 - x)^2)(1-x)	M1	or $\frac{\mathrm{d}y}{\mathrm{d}x} = 6(1-x)^2 - 2$	substitution of $\cos t = \pm 1 \pm x$ to obtain expression in terms of <i>x</i> only allow sign errors, bracket errors or minor slips in arithmetic eg omission of 2 for these method marks		

Question	Answer/Indicative content	Marks	Part marks and guidance			
Question iii iii iv iv	Answer/Indicative content $y = 2x^3 - 6x^2 + 4x$ or $y = 2x$ $(x^2 - 3x + 2)$ or $y = 2x(x - 1)(x - 2)$ oe cao $1)(x - 2)$ oe caocubic with two turning points and of correct orientation through $(0, 0)$ x -intercepts correct and only for $0 \le x \le 2$	Marks A1 M1 A1	Part marks a integration and substitution of eg (0, 0) to obtain correct answer must see <i>y</i> = at some stage for A1	A guidance Examiner's Comments A significant number of candidates worked immediately with inverse trig functions and failed to score - not realising that they could not achieve a polynomial expression by this route. Many candidates appreciated the need to use the double angle formula and Pythagoras, but mistakes in expanding brackets were common and the "2" was frequently omitted following substitution. Expressing cost in terms of x often went wrong and the high frequency of algebraic slips prevented many candidates from achieving full marks. Examiner's Comments Not many candidates made		
				the connection between this part of the question and earlier work. Cubics of the right orientation and with the right intercepts were sometimes seen, but very few candidates appreciated the restriction on the <i>x</i> -values. Nevertheless, a few candidates who had made little progress in earlier parts of the question reached for their graphical calculators and achieved both marks.		
	Total	15				

Quest	tion	Answer/Indicative content	Marks	Part marks and guidance		nd guidance
4	а	Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{d\theta}{dx}$ Obtain $\frac{-3\cos\theta}{2\cos\theta}$	M1(AO1. 1a) A1(AO1.			
		$2\sin\theta$	1)			
			[2]			
	b	$(y-3\sin\theta) = \frac{-3\cos\theta}{2\sin\theta}(x-2\cos\theta)$ $2y\sin\theta - 6\sin^2\theta = -3x\cos\theta + 6\cos^2\theta$ $2y\sin\theta + 3x\cos\theta = 6$ $12\sin\theta + 6\cos\theta = 6 \Rightarrow 2\sin\theta + \cos\theta = 1$	M1(AO3. 1a) M1(AO1. 1) A1FT(AO 1.1) E1(AO2. 1) [4]	Attempt equation of straight line in any unsimplifie d form Accept <i>x</i> , <i>y</i> confusion Simplify their equation and use $\cos^2\theta$ + $\sin^2\theta$ = 1 Substitute (2, 6) and simplify to AG	OR M1 When θ = θ_Q , gradient of curve is given by -3 cos θ_Q $2 \sin \theta_Q$ M1 The gradient of the line through (2,6) and (2cos θ_Q) at ,3sin θ_Q) is M1 Equate and clear fractions E1 Obtain AG	

Question	Answer/Indicative content	Marks	Part marks and guidance
C	Use $R\sin(\theta + \alpha)$ on $2\sin\theta + \cos\theta$ $R\sin\alpha = 1$, $R\cos\alpha = 2$ Obtain $\alpha = 0.4636$ and $R = \sqrt{5}$ Use correct order of operations to solve $\sqrt{5}\sin(\theta + 0.4636) = 1$ Obtain 0 Obtain 2.21	M1(AO3. 1a) A1(AO1. 1) M1(AO1. 1) B1(AO2. 2a) A1(AO1. 1) [5]	Should go as far as finding R and α Allow alternative formsOR M1 Square and use $\sin^2\theta +$ $\cos^2\theta = 1$ A1 $4\sin^2\theta +$ $4\sin^2\theta +$ $1 - 2\sin^2\theta$ $) = 1$ M1 Simplify and solve $5\sin^2\theta -$ $4\sin\theta = 0$ Or better (2.214345) Or better (2.214345)
	Total	11	

Q	uestio	'n	Answer/Indicative content	Marks		Part marks a	nd guidance
5		а	(a) when x = 0, t = 0 and hence y = 0	E1(AO2. 4) [1]	Justify (0, 0) convincingl y		
		а	(b) when <i>x</i> = 1, <i>t</i> = 1 and hence <i>y</i> = 0.5	B1(AO1. 1) [1]	Obtain <i>y</i> = 0.5		
		b	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2}{(1+t)^2}$ $\int \frac{t^2}{1+t} \mathrm{d}x = \int \frac{t^2}{1+t} \times \frac{2}{(1+t)^2} \mathrm{d}t$ $= \int \frac{2t^2}{(1+t)^3} \mathrm{d}t$	M1(AO2. 1) A1(AO2. 1)	Attempt $\frac{dx}{dt}$ Obtain correct derivative Use $\int y dx = \int y \frac{dx}{dt} dt$ Obtain given answer Justify t -limits from x = 0, 1	rule, or other valid method $x = 0: \frac{2t}{1-t} = 0 \text{ so } t = 0$	

Questic	on	Answer/Indicative content	Marks		Part marks a	nd guidance
	c	DR use $u = 1 + t$ giving $du = dt$ $\int \frac{2t^2}{(1+t)^3} dt = \int \frac{2(u-1)^2}{u^3} du$ $= \int 2u^{-1} - 4u^{-2} + 2u^{-3} du$ $= \left[2\ln u + 4u^{-1} - u^{-2}\right]_1^2$ $= (2\ln 2 + 2 - 0.25) - (2\ln 1 + 4 - 1)$ $= 2\ln 2 - \frac{5}{4}$	E1(AO1. 1a) M1(AO1. 1a) A1(AO1. 1) M1(AO1. 1a) A1(AO1. 1) [6]	Must be stated explicitly Attempt to change integrand to function of <i>u</i> Obtain correct integrand Attempt integration Attempt use of limits <i>u</i> = 1, 2 Obtain correct exact area	Any equivalent form Allow any exact equiv	
		Total	13			

Question	Answer/Indicative content	Marks	Part marks and guidance
Question 6 a 1 1 1	Answer/Indicative content $x = \ln(t^{2} - 4) \Rightarrow \frac{dx}{dt} = \frac{2t}{t^{2} - 4}$ Area = $\int \frac{4}{t^{2}} \left(\frac{2t}{t^{2} - 4}\right) dt$ $= \int \frac{8}{t(t^{2} - 4)} dt$ $a = 3, b = 4$		Attempt diff erentiation of xusing chain rule – must be of for $\frac{kt}{t^2 - 4}$ m Use $\int y \frac{dx}{dt} dt$ of with $\frac{dx}{dt}$ their AG Correct limits

Question	Answer/Indicative content	Marks	Part marks and guidance		
Question b Image: Constraint of the second	Answer/Indicative content $ \frac{DR}{t(t^{2}-4)} = \frac{A}{t} + \frac{B}{t-2} + \frac{C}{t+2} $ $ 8 = A(t-2)(t+2) + Bt(t+2) + Ct(t-2) + Ct(t-2) $ $ A = -2, B = 1, C = 1 $ $ \int (\frac{2}{t} + \frac{1}{t-2} + \frac{1}{t+2}) dt = -2\ln t + \ln(t-2) + \ln(t+2) $ $ (-2\ln 4 + \ln 2 + \ln 6) - (-2\ln 3 + \ln 1 + \ln 5) $ $ (\frac{27}{20}) $ n	Marks B1 (AO 3.1a) M1 (AO 1.1a) A2 (AO 1.1,1) M1* (AO 1.1) M1dep* (AO 1.1) M1 (AO 2.1) A1 (AO [8]	Part marks and guidanceCorrect form of partial fractionsCover up, 		

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance
		C	$t^{2} = \frac{4}{y} \Rightarrow x = \ln\left(\frac{4}{y} - 4\right)$ $e^{x} = \frac{4}{y} - 4 \Rightarrow y = K$ $y = \frac{4}{e^{x} + 4}$ Alternative solution $e^{x} = t^{2} - 4$ $t^{2} = e^{x} + 4 \Rightarrow y = K$ $y = \frac{4}{e^{x} + 4}$	M1* (AO 3.1a) M1dep* (AO 1.1) A1 (AO 1.1) M1* M1dep* A1 [3]	Re-arrange and eliminate t Remove logs and attempt to make y the subject Remove logs Remove logs Remove logs Remove logs Rearrange and eliminate t
			Total	15	

Q	uestion	Answer/Indicative content	Marks	Part marks a	nd guidance
7	i	$\frac{dy}{dt} = 2(+) - \frac{2}{t^3}; \ \frac{dx}{dt} = -\frac{1}{t^2} \text{ or soi ISW}$ $\frac{2}{t} - 2t^2 \text{ or } -2\left(t^2 - \frac{1}{t}\right), \frac{2t^3 - 2}{-t}, -t^2\left(2 - \frac{2}{t^3}\right) \text{ oe }$	B1, B1 B1	powers Examiner's Comments In general, apart from the $\frac{1}{t}$ being Int in some cases, the differentiation was handled competently. The question asked for the answer to be simplified and many alternatives were accepted — though not fractions with negative powers involved in numerator and	e.g. $\frac{2-2t^{-3}}{-t^2}$
	ii	(Any of their expressions for $\frac{dy}{dx} = 0$ or their $\frac{dy}{dt} = 0$	M1	denominator.	
	ii	t = 1 →(stationary point) = (0, 3)	A1	Not awarded if $\frac{dy}{dx}$ is wrong in (i) and used here BUT allow recovery if only explicitly considering $\frac{dy}{dt} = 0$	
	ii	Consider values of <i>x</i> on each side of their critical value of <i>x</i> which lead to finite values of $\frac{dy}{dx}$	M1		

Question	Answer/Indicative content	Marks	Part marks and guidance
	Hence (0, 3) is a minimum point www	A1	Totally satis; values of x must be close to 0 & not going below or equal to $x =$ -1 Examiner's Comments The stationary point was relatively easy to find; having found t , the question directed candidates to find x and y . It was hoped that this would focus attention on the value of x , as is normal in the classifying of stationary points. However, some considered points on either side of the critical value of t , not realising that this would not indicate which side of the stationary point they were considering.
	Attempt to find <i>t</i> from $x = \frac{1}{t} - 1$ and substitute into the equation for <i>y</i> $y = \frac{2}{x+1} + (x+1)^{2} = \frac{1}{2}$ (can be unsimplified) ISW	M1 A1	Examiner's Comments Apart from careless errors, this part of the question was well done.
	Total	9	

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and guidance		
8	i $\frac{A}{x} + \frac{B}{x+2}$		B1	award if only implied by answer			
		i	x + 8 = A(x + 2) + Bx soi	M1	allow one sign error <u>Examiner's</u>	clearing fractions successfully	
					<u>Comments</u> □□		
					Most recognised the correct form of partial fractions and successfully cleared the fractions to produce a fully correct solution.		
		i	A = 4 and B = –3	A1		if M0 , B1 for each value www	
		ii	quotient (<i>P</i>) is 7	B1			
		ii	2 <i>x</i> + 16 seen	B1	if B0 , B1 for <i>Q</i> = 8 and B1 for <i>R</i> = – 6 www	eg as remainder or in division chunking	
					Examiner's Comments		
					Most candidates used long division and successfully found the quotient and the remainder. Many then used their answer to part (i) to produce a correct solution. A variety of other approaches were also successful, but a significant minority of those who equated coefficients went astray in the algebra.		
					candidates tried to divide by x and $x + 2$ separately, and were rarely successful.		
		ii	$7 + \frac{8}{x} - \frac{6}{x+2}$	B1		or allow <i>P</i> = 7, <i>Q</i> = 8, <i>R</i> = – 6	
		iii	t = f(x)	M1*	from $x = \frac{2t}{1-t}$,		
					M0 for $t = g(y)$		

	dance
iii $t = \frac{x}{x+2}$ A1or B2 if unsupportedExaminer's CommentsThere were many well laid out, perfective correct responses to this question. However, it proved to be supprisingly difficult for many. Sometimes a formula for t in terms of x and t was substituted in, which didn't lead anywhere. In other cases the expression for t contained a sign error or an algebraic silp. Often candidates verified the result by substitution, which was a convoluted approach and did not earn full marks.iii $y = 3 \times \text{their} \frac{x}{x+2} + \frac{4}{\text{their} \frac{x}{x+2}}$ egM1dep*iii $y = 3 \times \text{their} \frac{x}{x(x+2)}$ and completion toM1dep*	

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
	$y = \frac{7x^2 + 16x + 16}{x(x+2)}$	A1		at least one correct, constructive, intermediate step shown if MOM0, SC2 for substitution of $x = \frac{2t}{1-t}$ in RHS of given equation and completion with at least two correct, constructive intermediate steps to $y = 3t + \frac{4}{t}$ www
iv	$\int \text{their } (P + \frac{Q}{x} + \frac{R}{x+2})[dx]$	M1*	where <i>P, Q</i> and <i>R</i> are constants obtained in (ii)	allow omission of dx
iv	F[x] = 7x + 8lnx - 6ln(x + 2)	A1ft	allow recovery from omission of brackets in subsequent working	if M0, SC1 for $Px + Q\ln x + R\ln(x + 2)$ where constants are unspecified or arbitrary
iv	F[2] – F[1]	M1dep*		
iv	7 – 4ln2 + 6ln3	A1	Examiner's Comments There were many excellent responses to this part of the question. Most candidates spotted the link with part (ii) and went on to earn three or four marks. Those who started from scratch were almost never successful.	
	Total	14		

Qı	uestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
9		i	$\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = 3t^2 - 3$	B1			
			$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = k\left(2+t\right)^{\frac{3}{2}}$	M1	<i>k</i> ≠ 0		
			$\frac{dy}{dx} = \frac{3t^2 - 3}{-\frac{1}{2}(2+t)^{-\frac{3}{2}}}$ oe isw	A1 [3]	do not allow bracket errors in marked		
			Alternatively	54	answer		
			$[y=](x^{-2}-2)^3-3x^{-2}+6$ oe	B1			
			$\left[\frac{dy}{dx}\right] = 3(x^{-2} - 2)^2 \times (-2x^{-3}) + 6x^{-3} \text{ oe}$	M1			
			$3\left[\left((2+t)^{-\frac{1}{2}}\right)^{-2} - 2\right]^{2} \times -2\left((2+t)^{-\frac{1}{2}}\right)^{-3} + 6\left((2+t)^{-\frac{1}{2}}\right)^{-3}$	A1	allow sign errors and/or one coefficient		
			$+6\left((2+t)^{-2}\right)$	[3]	error		
			oe isw	[J]			
					Examiner's Co	omments	
					This was done	e well by	
					most. A few sli	ipped up with	
					$\frac{dx}{dt}$ or made bra	acket or sign	
					when combinir derivatives.	ng the two	

Question	Answer/Indicative content	Marks		Part marks a	nd guidance
ii	their $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1	allow eg $3t^2 - 3 = 0$	allow one transcriptio n error	
	(1, 2) oe identified as only stationary point eg $t = -0.5$, $x = \sqrt{2/3}$ and gradient = 8.27 eg $t = -1.5$, $x = \sqrt{2}$ and gradient = -2.65 or eg $t = -0.5$ and $y =$ 1.375, $t = -1.5$ and $y =$ 1.125 hence maximum value at (1, 2) <i>Alternatively, for last two</i> marks evaluation of second derivative at their t = -1 or their $x = 1\frac{d^2y}{dx^2} = -18x^4 + 24x^8 - 48x^{-6} + 18x^{-4}(x^{-2} - 2)^2or oe6(2 + t)^2 (7t^2 + 8t - 3)convincing justification thatsecond derivative < 0 [NB –24] so maximum$	A1 M1 M1 [4]	NB $t = -1$ considerati on of gradient either side of <i>their</i> $x =$ 1 or consider ation of y -values either side of their $y =$ 2 second derivative must be obtained from correct method; allow sign errors	ignore work with other points for the last two marks ignore work with other points for the last two marks	
			Examiner's Co	omments	

Question	Answer/Indicative content	Marks	Part marks and	d guidance
			Most were able to start this part, but often went stray in finding the correct value of <i>t</i> . A significant minority of candidates worked with $t =$ -2 and / or $t = 1$, which was pointless as both values are outside the specified range. Even those who did work with $t = -1$ only often went astray in finding <i>x</i> and <i>y</i> . Only a few candidates realised the need to check the x-values as well as the values of the gradient when determining the nature of the stationary point, and those who tried to use the second derivative almost invariably went wrong.	
	$x \ge \frac{1}{\sqrt{2}}$ $-2 < y \le 2$	B1 [2]	Examiner's Comments Very few candidates were able to state both ranges correctly.	

Question	Answer/Indicative content	Marks	Part marks and guidance
iv		B1 [1]	curve with maximum in 1st quadrant
	Total	10	

Question	Answer/Indicative content	Marks	Part marks and guidance
Question 10 a	Answer/Indicative content $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}, \text{ where } \frac{dy}{dt} = 3t^2, \frac{dx}{dt} = 2t$ $\frac{dy}{dx} = \frac{3t^2}{2t} \left(=\frac{3}{2}t\right)$ $y - t^3 = \frac{3t^2}{2t}(x - t^2)$		Correct application of $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ with their $\frac{dy}{dt}$ and $\frac{dx}{dt}$ (with at least one correct) Correct derivative (need not be
	$2y = 3tx - t^3$	AU 1.1) A1 (AO 2.2a) [4]	at this stage) Use of $y - t^3 = m(x - t^2)$ with their m in terms of t AG

Question	Answer/Indicative content	Marks		Part marks and guidance	
b	DR Substitute A giving $t^3 - 3t(\frac{19}{12}) + 2(-\frac{15}{8}) = 0$, and attempt factor theorem with $f(t) = 4t^3 - 19t - 15$, oe $f(-1) = 0 \Rightarrow (t + 1)$ is a factor $f(t) = (t + 1)(4t^2 - 4t - 15)$ f(t) = (t + 1)(2t - 5)(2t + 3) $t = \frac{5}{2}$ only, as $t \ge 0$ $y = 0 \Rightarrow B(\frac{25}{12}, 0)$ and area $= \frac{1}{2} \times \frac{15}{8} \times \frac{25}{12}$ area $= \frac{125}{64}$	M1 (AO 3.1a) A1 (AO 1.1) M1 (AO 1.1) A1 (AO 1.1) A1 (AO 3.2a) M1 (AO 1.1) A1 (AO 2.2a) [7]	Correctly substitute <i>A</i> into given tangent and attempt to find a factor Attempt to obtain a quadratic factor Use of their <i>t</i> to find <i>B</i> and attempt to find area using their <i>B</i>	By any correct method Their value of <i>t</i> must be positive	
	Total	11			

Q	uestior	ı	Answer/Indicative content	Marks	Part marks a	nd guidance	
11		i	$\frac{\mathrm{d}y}{\mathrm{d}t} = -2\sin 2t + 2\cos t_{\mathrm{SOI}}$	B1	NB $\frac{\mathrm{d}x}{\mathrm{d}t} = 2\cos t$	if B0M0A0 SC3 fo $\frac{dy}{dx} = 1 - x$ from	
						correct Cartesian equation seen in part (i) or part (ii) B1 for substitution of <i>x</i> = 2sin <i>t</i>	
		i	$\frac{dy}{dx} = \text{their}\frac{\frac{dy}{dt}}{\frac{dx}{dt}} \text{ oe}$	M1			
		i	$\frac{-2\sin 2t + 2\cos t}{2\cos t}$ soi	A1			
		i	$\frac{-4\sin t\cos t + 2\cos t}{2\cos t}$	A1	or equivalent intermediate step		
			or $\frac{2\cos t(-2\sin t+1)}{2\cos t}$ and completion to 1 – 2sin t www				
		i	(1, 1½)	B1	NB $t = \frac{\pi}{6}$	from 1 – 2sin <i>t</i> = 0	
					Examiner's Comments		
					This proved accessible to most, with a good number of candidates achieving full marks. However, in many cases "2" went missing from the double angle, and		
					$=\frac{-2\sin t + 2\cos t}{2\cos t} = 1 = 2\sin t$		
					in an attempt to achieve the given answer. Surprisingly, a large number of candidates simply omitted to find the co-ordinates of the turning point, or stopped $t = \frac{\pi}{6}.$		

Question	Answer/Indicative content	Marks	Part marks and guidance		
ii	ii $(y =) 1 - 2\sin^2 t + 2\sin t$		may be awarded after correct substitution for x eg (y =) $1 - \frac{x^2}{4} - \sin^2 t + 2\sin t$	or (<i>y</i> =) <i>x</i> + cos2 <i>t</i>	
ii	substitution of $sint = \frac{1}{2} x$ to eliminate t	M1		substitution of $t = \sin^{-1}(x/2)$ to eliminate t	
ii	$y = 1 + x - \frac{1}{2} x^2$ oe isw	A1	or B3 www Examiner's Comments Those who attempted to find a polynomial equation often went astray in the substitution: $x^2 = (2\sin t)^2 =$ $2\sin^2 t$ was a common error, leading to $y = 1 - x^2 + x$. It was not always clear what substitution candidates were making: in cases where it went wrong a method mark was sometimes lost. Weaker candidates opted for an equation involving $\arcsin(\frac{x}{2})$	$y = x + \cos 2(\sin^{-1}(x_{2}))$ oe isw	
	$-2 \le x \le 2 \text{ or } x \ge -2 \text{ (and) } x$ $\ge 2 \text{ or } x \le 2$	B1	resulted in zero in part (iii). cao		
	sketch of negative quadratic with endpoints in 1 st and 3 rd quadrants	M1	RH point must be to the right of the maximum		

Q	uestio	n	Answer/Indicative content	Marks	Part marks and guidance	
			positive <i>y</i> -intercept and one distinguishing feature isw	A1	Examiner's Comments Some candidates were able to deduce the range of values for <i>x</i> , but more often than not did not take the hint and relate this to their sketch. Only the best candidates produced a graph of the correct shape with endpoints in the correct quadrants, and only a handful identified a correct distinguishing feature for the third mark.	one from: endpoints (-2, -3) and (2, 1), vertex at $(1, 1\frac{1}{2})$, <i>y</i> - intercept is $(0, 1)$, <i>x</i> - intercept is $(1 - \sqrt{3}, 0)$
			Total	11		

Q	uestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
12		а	$y = 0 \Rightarrow (t = 0 \text{ or}) \operatorname{cost} t = 0$ $k = \frac{1}{2}\pi$	M1 (AO1.1a) A1 (AO2.2a) [2]	Setting <i>y</i> = 0		
		b	$\frac{\mathrm{d}y}{\mathrm{d}t} = \cos t - t \sin t$	M1 (AO1.1) A1 (AO1.1) [2]	Attempt at product rule – allow sign errors		
		С	$\cos t - t \sin t = 0 \Rightarrow \left(1 - \frac{1}{2}t^{2}\right) - t(t) = 0$ $\frac{3}{2}t^{2} = 1 \Rightarrow t = \dots$ $t = \sqrt{\frac{2}{3}}$ $x \approx 0.2$	M1* (AO2.1) dep*M1 (AO1.1) A1 (AO1.1) A1 (AO2.2a) [4]	Setti $\frac{dy}{dt} = 0$ an ng d substituting small angle approximati ons for both sine and cosine Simplify and attempt to solve for <i>t</i> (with correct order of operations) Condone 0.18	Allow ± 0.1821878 	

Question		Answer/Indicative content	Marks		Part marks ar	nd guidance
c	ł	(i) $I = \int t \cos t \left(\frac{1}{4} \cos t\right) dt$	M1 (AO1.2)	Attempted use of $\int y \frac{dx}{dt} dt$	Ignore limits for first two marks	
		$=\frac{1}{4}\int t\left(\frac{1}{2}(1+\cos 2t)\right)\mathrm{d}t$	M1 (AO3.1a)	Use of $\cos^2 t = \frac{1}{2}(1 + \cos 2t)$	Allow sign errors in	
		$=\frac{1}{8}\int_{0}^{\frac{1}{2}\pi}t(1+\cos 2t)\mathrm{d}t\mathrm{d}$	A1FT (AO2.2a) [3]	$a = \frac{1}{2}\pi$ FT their <i>k</i> from	identity	
		(ii) DR		part (a)		
		$\int t\cos 2t \mathrm{d}t = \frac{1}{2}t\sin 2t - \frac{1}{2}\int \sin 2t \mathrm{d}t$	M1* (AO2.1)	$b = \frac{1}{8}$	For any	
		$\int t\cos 2t\mathrm{d}t = \frac{1}{2}t\sin 2t + \frac{1}{4}\cos 2t$	A1 (AO1.1)	$\int t \cos 2t dt$ $= \alpha t \sin 2t$	non–zero α, β	
		$\int t \mathrm{d}t = \frac{1}{2}t^2$	B1 (AO1.1)	±β∫sin 2 <i>t</i> d <i>t</i> Must be		
		$I = \frac{1}{16} \left[t^2 \right]_0^{\frac{1}{2}\pi} + \frac{1}{8} \left[\frac{1}{2} t \sin 2t + \frac{1}{4} \cos 2t \right]_0^{\frac{1}{2}\pi}$	dep*M1 (AO1.1)	seen		
		$=\frac{1}{64}(\pi^2-4)$	A1 (AO2.2a)			
		Alternative method	(, (02.20)			
		$\int t(1+\cos 2t) dt = t\left(t+\frac{1}{2}\sin 2t\right) - \int \left(t+\frac{1}{2}\sin 2t\right) dt$	M1*	Use of 0 and their <i>k</i> in their integrated expression		
		$= t \left(t + \frac{1}{2} \sin 2t \right) - \left(\frac{1}{2} t^2 - \frac{1}{4} \cos 2t \right)$	A1	Or exact equivalent		
		$I = \left[t\left(t + \frac{1}{2}\sin 2t\right)\right]_{0}^{\frac{1}{2}\pi} - \left[\frac{1}{2}t^{2} - \frac{1}{4}\cos 2t\right]_{0}^{\frac{1}{2}\pi}$	A1			
		$=\frac{1}{64}(\pi^2-4)$	dep*M1	For attempt at integration by parts		

Question	Answer/Indicative content	Marks	Part marks and guidance
		A1 [5]	Correct first application Complete integration correct Use of 0 and their <i>k</i> in their integrated expression Or exact
			equivalent
	Total	16	