1. Use the trapezium rule, with 3 strips each of width 2 , to estimate the value of

$$
\int_{5}^{11} \frac{8}{x} \mathrm{~d} x
$$

2.

The diagram shows part of the curve $y=-3+2 \sqrt{x+4}$. The point $P(5,3)$ lies on the curve. Region A is bounded by the curve, the x-axis, the y-axis and the line $x=5$. Region B is bounded by the curve, the y-axis and the line $y=3$.
i. Use the trapezium rule, with 2 strips each of width 2.5 , to find an approximate value for the area of region A, giving your answer correct to 3 significant figures.
ii. Use your answer to part (i) to deduce an approximate value for the area of region B.
iii. By first writing the equation of the curve in the form $x=\mathrm{f}(y)$, use integration to show that the exact area of region B is $\frac{14}{3}$.
3. i. Use the trapezium rule, with 4 strips each of width 1.5, to estimate the value of

$$
\int_{4}^{10} \sqrt{2 x-1} \mathrm{~d} x
$$

giving your answer correct to 3 significant figures.
ii. Explain how the trapezium rule could be used to obtain a more accurate estimate.
4. i. The curve $y=3^{x}$ can be transformed to the curve $y 3^{x-2}$ by a translation. Give details of the translation.
ii. Alternatively, the curve $y=3^{x}$ can be transformed to the curve $y=3^{x-2}$ by a stretch. Give details of the stretch.
[2]
iii. Sketch the curve $y=3^{x-2}$, stating the coordinates of any points of intersection with the axes.
iv. The point P on the curve $y=3^{x-2}$ has y-coordinate equal to 180. Use logarithms to find the x-coordinate of P, correct to 3 significant figures.
[3]
v. Use the trapezium rule, with 2 strips each of width 1.5, to find an estimate for $\int_{13^{x-2}}^{4} \mathrm{~d} x$. Give your answer correct to 3 significant figures.
5. (a) Use the trapezium rule, with four strips each of width 0.25 , to find an approximate value for
$\int_{0}^{1} \frac{1}{\sqrt{1+x^{2}}} \mathrm{~d} x$
(b) Explain how the trapezium rule might be used to give a better approximation to the integral given in part (a).
6. Use the trapezium rule, with 4 strips each of width 0.2 , to find an estimate for
(a) $\int_{0}^{0.8} \cos x \mathrm{~d} x$,
where x is in radians. Give your answer correct to 3 significant figures.
(b) Explain, with the aid of a sketch, why the value from part (a) is an under-estimate.
7. Fig. 1 shows a garden that is to be designed to include a lawn and a flowerbed.

Fig. 1
The lawn can be modelled using four trapezia, as shown in Fig. 2. Each trapezium has a width of 1.5 m , and the lengths of the parallel sides are $8.0 \mathrm{~m}, 8.5 \mathrm{~m}, 8.2 \mathrm{~m}, 8.4 \mathrm{~m}$ and 8.6 m respectively.

Fig. 2
(a) (i) Use the trapezium rule with 4 strips to estimate the area of the lawn.
(ii) Given that lawn seed costs $£ 0.49$ per square metre, estimate the total cost of the lawn seed required.
(b) Suggest two limitations of this model.
(c) Suggest one possible refinement of this model.

The flowerbed can be modelled as the segment of a circle with radius 3.2 m . Fertiliser costs $£ 0.17$ per square metre.
(d) Estimate the total cost of fertiliser required to cover the entire area of the flowerbed.
8. (i) Use Simpson's rule with four strips to find an approximation to

$$
\int_{1}^{9} \ln x \ln (x+4) \mathrm{d} x
$$

giving your answer correct to 4 significant figures.
(ii) Deduce an approximation to

$$
\int_{1}^{9} \ln \left(x^{-1}\right) \ln \left(x^{2}+8 x+16\right) \mathrm{d} x
$$

giving your answer correct to 4 significant figures.
9. (a) Use the trapezium rule, with four strips each of width 0.5 , to estimate the value of

$$
\int_{0}^{2} e^{x^{2}} d x
$$

giving your answer correct to 3 significant figures.
(b) Explain how the trapezium rule could be used to obtain a more accurate estimate.
10. (a) Use the trapezium rule, with two strips of equal width, to show that

$$
\int_{0}^{4} \frac{1}{2+\sqrt{x}} \mathrm{~d} x \approx \frac{11}{4}-\sqrt{2}
$$

(b) Use the substitution $x=U^{2}$ to find the exact value of

$$
\begin{equation*}
\int_{0}^{4} \frac{1}{2+\sqrt{x}} \mathrm{~d} x \tag{6}
\end{equation*}
$$

(c) Using your answers to parts (a) and (b), show that

$$
\ln 2 \approx k+\frac{\sqrt{2}}{4}
$$

where k is a rational number to be determined.

Question		Answer/Indicative content	Marks	Part marks and guidance		

Question		Answer/Indicative content	Marks	Part marks and guidance	
2	i	$\left\lvert\, \begin{aligned} & 0.5 \times 2.5 \times(1+2(-3+ \\ & 2 \sqrt{ } 6.5)+3) \end{aligned}\right.$	M1*	Attempt y-values at $x=0$, 2.5, 5 only	M0 if additional y-values found, unless not used y_{1} can be exact or decimal (2.1 or better) Allow M1 for using incorrect function as long as still clearly y-values that are intended to be the original function eg $-3+2 \sqrt{ } x+4$ $($ from $\sqrt{ }(x+4)=\sqrt{ } x+\sqrt{ } 4)$
	i	$=10.2$	M1d*	Attempt correct trapezium rule, inc $h=2.5$	Fully correct structure reqd, including placing of y -values The 'big brackets' must be seen, or implied by later working Could be implied by stating general rule in terms of y_{0} etc, as long as these have been attempted elsewhere and clearly labelled Using x-values is M0 Can give M1, even if error in evaluating y-values as long correct intention is clear
	i		A1	Obtain 10.2, or better Examiner's Comments Candidates were familiar with the trapezium rule and the majority were able to apply it accurately to the given situation. A surprising minority rounded the final answer to 10.3 rather than 10.2. This could be ignored provided that a correct, more accurate, answer had been seen previously. Slips in calculating the y values were condoned, as long as there was sufficient working to convey the correct intent.	Allow answers in the range [10.24, 10.25] if > 3sf A0 if exact surd value given as final answer Answer only is $0 / 3$ Using 2 separate trapezia can get full marks Using anything other than 2 strips of width 2.5 is MO Using the trapezium rule on result of an integration attempt is $0 / 3$
	ii	$(5 \times 3)-10.2=4.8$	M1	Attem pt area of r ectangle their (i)	As long as $0<$ their (i) < 15

Question		Answer/Indicative content	Marks A1FT	Part marks and guidance	
	ii			Obtain 4.8, or better Examiner's Comments The overwhelming majority of candidates gained both of the marks available, especially as full credit could still be awarded following an incorrect result to part (i).	Allow for exact surd value as well Allow answers in range $[4.75,4.80] \text { if }>2 \mathrm{sf}$
	iii	$x=\frac{1}{4}\left(y^{2}+6 y-7\right)$	M1	Attempt to write as $x=f(y)$	Must be correct order of operations, but allow slip with inverse operations eg $+/-$, and omitting to square the $\frac{1}{2}$ Allow $y^{2}+9$ from an attempt to square $y+3$, even if $(y+3)^{2}$ is not seen explicitly first Allow maximum of 1 error
	iii		A1	Obtain $x=\frac{1}{4}\left(y^{2}+6 y-7\right)$ aef	Allow A1 as soon as any correct equation seen in format $x=\mathrm{f}(y)$, eg $x=\frac{1}{4}(y+3)^{2}-4 \mathrm{or}$ $x=\frac{1}{4}\left(y^{2}+6 y+9\right)-4$, and isw subsequent error

Question		Answer/Indicative content	Marks	Part marks and guidance		

Question		Answer/Indicative content	Marks	Part marks and guidance	
3	i	$\begin{aligned} & 0.5 \times 1.5 \times(\sqrt{ } 7+2(\sqrt{ } 10+ \\ & \sqrt{ } 13+\sqrt{ } 16)+\sqrt{ } 19) \end{aligned}$	B1	State the 5 correct y-values, and no others	B0 if other y-values also found (unless not used) Allow for unsimplified, even if subsequent error made Allow decimal equivs
	i		M1*	Attempt to find area between $\begin{aligned} & x=4 \text { and } x=10, \text { using } \\ & k\left(y_{0}+y_{n}+2\left(y_{1}+\ldots+y_{n-1}\right)\right) \end{aligned}$	Correct placing of y-values required y-values may not necessarily be correct, but must be from attempt at using correct x-values (allow 7,10 etc ie no $\sqrt{ }$) The 'big brackets' must be seen, or implied by later working Could be implied by stating general rule in terms of y_{0} etc, as long as these have been attempted elsewhere and clearly labelled Could use other than 4 strips as long as of equal width (but M0 for just one strip)
	1		M1d*	Use $k=0.5 \times 1.5$ soi	Or $k=0.5 \times h$, where h is consistent with the number of strips used

Question		Answer/Indicative content	Marks	Part marks and guidance		

Question		Answer/Indicative content	Marks	Part marks and guidance	
	ii	Use more strips / narrower strips	B1	Any reference to increasing no of strips or reducing width of strips Examiner's Comments The vast majority of candidates gained a mark for either identifying that more strips could be used, or identifying that the width of the strips could be reduced. Benefit of doubt was given to those candidates who gave both reasons, but seemed to think that they were mutually exclusive. The most common error was for candidates to justify why it was inaccurate, referring to it being an underestimate, rather than focusing on the actual question posed.	No need to explicitly state that it is over the same interval Ignore any reference to under- / over-estimate Ignore any attempts at sketching the curve Ignore any irrelevant comments, but penalise contradictory statements eg use more strips, which are wider Could give numerical example eg 'use 6 strips', but if giving both width and no of strips then must give total width of 6
		Total	5		

Question		Answer/Indicative content	Marks	Part marks and guidance	
4	i	2 (units) in the positive x -direction	M1	Correct direction	Identify that the translation is in the x-direction (either positive or negative, so M1 for eg ' 2 in negative x -direction') Allow any terminology as long as intention is clear, such as in/on/along the x -axis Ignore the magnitude

Question		Answer/Indicative content	Marks	

Question	Answer/Indicative content	Marks	Part marks	nd guidance
ii	sf $\frac{1}{9}$ in the y-direction	M1	Correct direction, with sf of $\frac{1}{9}$ or 9	Identify that the stretch is in the y-direction, with a scale factor of either $\frac{1}{9}$ or 9 (or equiv in index notation) Allow just $\frac{1}{9}$ or 9 , with no mention of 'scale factor' Allow exact decimal equiv for $\frac{1}{9}$ Allow any terminology as long as the intention is clear, such as in/on/along the y-axis

| Question | | Answer/Indicative content | Marks | | Part marks and guidance |
| :---: | :--- | :--- | :--- | :--- | :--- |$|$| Fully correct description |
| :--- |

Question		Answer/Indicative content	Marks		Part marks and guidance

Question	Answer/Indicative content	Marks	Part marks and guidance	
iv		A1	Obtain 6.73, or better	If $>3 \mathrm{sf}$, allow answer rounding to 6.727 with no errors seen $0 / 3$ for answer only or T\&I If rewriting eqn as $3^{x-2}=$ $3^{4.73}$ then $0 / 3$ unless evidence of use of logs to find the index of 4.73 SR If using index rules first then B1 for $3^{x}=1620$ M1 for attempting to use logs to solve $3^{x}=k$ A1 for 6.73 Examiner's Comments Candidates continue to demonstrate proficiency when solving straightforward equations involving logarithms and this was true on this question, with the vast majority of candidates gaining all of the available marks with ease. The most common approach was to use logarithms to base 3 , although solutions involving base 10, or even some unspecified base, were also seen. There are still a number of candidates who do not make effective use of brackets, and it was relatively common to see x $-2 \log 3$ rather than $(x-2)$ log3. Some candidates retrieved this by subsequently using their invisible brackets correctly, whereas others continued as if they were never intended.

Question	Answer/Indicative content	Marks	Part marks and guidance	
v	$\begin{aligned} & 0.5 \times 1.5 \times\left\{3^{-1}+2 \times 3^{0.5}+\right. \\ & \left.3^{2}\right\} \\ & =9.60 \end{aligned}$	B1	State the 3 correct y-values, and no others	B0 if other y-values also found (unless not used) Allow for unsimplified, even if subsequent error made Allow decimal equivs
v	Enter text here.	M1	Attempt use of correct trapezium rule to attempt area between $x=1$ and $x=$ 4	Correct placing of y-values required y-values may not necessarily be correct, but must be from attempt at using correct x-values The 'big brackets' must be seen, or implied by later working Could be implied by stating general rule in terms of y_{0} etc, as long as these have been attempted elsewhere and clearly labelled Could use other than 2 strips as long as of equal width (but M0 for just one strip) Must have h as 1.5 , or a value consistent with the number of strips used if not 2

Question		Answer/Indicative content	Marks A1	Part marks and guidance	
	v			Obtain 9.60, or better (allow 9.6)	Allow answers in the range $[9.595,9.600] \text { if > 3sf }$ Answer only is $0 / 3$ Using the trap. rule on the result of an integration attempt is $0 / 3$, even if integration is not explicit Using two separate trapezia can get full marks Using other than 2 trapezia (but not just 1) can get M1 only Examiner's Comments This final part of the question was also very well answered, with many fully correct solutions being seen. Candidates generally showed their method clearly, and were able to identify the three relevant x-values and attempt the corresponding y-values. The trapezium rule was then usually correctly attempted, although some candidates committed the common error of omitting the necessary brackets. Very few candidates attempted to integrate the function before applying the trapezium rule.
		Total	12		

Question		Answer/Indicative content	Marks	Part marks and guidance		
5	a	$\begin{aligned} & \frac{0.25}{2}(1+0.7071+2(0.970 \\ & +0.8944+0.8)) \end{aligned}$	B1(AO 1.1) M1 (AO1. 1a) A1(AO1. 1) [3]	Obtain all five ordinates and no others: 0.7071, 0.8944, 1, 0.8, 0.970 Use correct structure for trapezium rule with h $=0.25$ better (0.87 953077)	Accept exact values: 1 , $\begin{aligned} & \frac{4}{\sqrt{17}}, \\ & \frac{2}{\sqrt{5}}, \frac{4}{5}, \frac{1}{\sqrt{2}} \end{aligned}$ x -coordinate s used MO. Omission of large brackets unless implied by correct answer M0 Accept 0.88 (0.879 53077)	
	b	"Use smaller intervals" or "use more trapezia"	$\begin{gathered} \text { B1(AO } \\ 2.4) \\ {[1]} \end{gathered}$			
		Total	4			

Question		Answer/Indicative content	Marks	Part marks and guidance		
6	i	$\begin{aligned} & 0.5 \times 0.2\{\cos 0+\cos 0.8+ \\ & 2(\cos 0.2+\cos 0.4+ \\ & \cos 0.6)\} \\ & =0.715 \end{aligned}$	B1	State the 5 correct y -values, and no others Attempt to find area between x $=0$ and $x=$ 0.8 , using $k\left\{y_{0}+y_{n}+\right.$ $2\left(y_{1}+\ldots+\right.$ $\left.\left.y_{n-1}\right)\right\}$	B0 if other y-values also found (unless not used) Allow for exact values seen, even if subsequent error made (including evaluating in degree mode) Allow decimal equivs (2dp or better) (1, 0.980, 0.921, 0.825 , 0.697); if using 2dp then allow 0.7 rather than 0.70 for final y value Correct placing of y-values required y -values may not necessarily be correct, but must be from attempt at using correct x-values in $y=\cos x$ (in radian mode or degree	

Question	Answer/Indicative content	Marks	Part marks and guidance	
			answer. The most common error was for candidates to use their calculator in degree mode rather than radian mode.	
ii	Graph of $y=\cos x$, with 4 trapezia drawn Tops of the trapezia are below the curve	B1 B1 [2]	$\left.\begin{array}{l\|l}\text { Correct } y= & \begin{array}{l}\text { Trapezia } \\ \text { cos } x \text { graph, } \\ \text { with exactly } \\ 4 \text { trapezia } \\ \text { of roughly } \\ \text { equal width }\end{array} \\ \text { must be } \\ \text { plausibly } \\ \text { [0, 0.8], } \\ \text { allow BOD } \\ \text { as long as } \\ \text { final } \\ \text { trapezium } \\ \text { ends } \\ \text { before } \pi / 2 \\ \text { Curve may } \\ \text { be shown } \\ \text { beyond } \\ x=0.8, \text { but } \\ \text { Any valid } \\ \text { explanation } \\ \text { B0 if clearly } \\ \text { of the } \\ \text { incorrect } \\ \text { shape } \\ \text { beyond } x= \\ 0.8 \\ \text { No need for } \\ \text { scale on } \\ \text { either axis } \\ \text { Exactly four } \\ \text { trapezia } \\ \text { must be } \\ \text { shown, of } \\ \text { roughly } \\ \text { equal } \\ \text { widths, with } \\ \text { top vertices }\end{array}\right\}$on the curve. Not Not dependent on previous B1 Must refer to the tops of the trapezia so B0 for 'trapezia	

Question	Answer/Indicative content	Marks	Part marks and guidance	
			as long as there was sufficient detail to be convincing. For the sketch graph, candidates were expected to provide a sketch of $y=\cos x$ with four trapezia shown. The most common error was to draw trapezia whose top vertices did not actually lie on the curve, and other errors included drawing just a single trapezium and even attempting to use $y=\sin x$ as the curve. Some precise and convincing solutions were seen,but these were in the minority.	
	Total	6		

| Question | | Answer/Indicative content | Marks | Part marks and guidance | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Question	Answer/Indicative content	Marks	Part marks and guidance
C	$\begin{aligned} & \frac{11}{4}-\sqrt{2} \approx 2(2-2 \ln 2) \\ & \ln 2 \approx \frac{5}{16}+\frac{\sqrt{2}}{4} \end{aligned}$	M1 (AO 1.1a)C A1(AO 2.1a)A [2]	Setting the given result approx. equal to their (b) $k=\frac{5}{16}$ Examiner's Comments While some, who had struggled with part (b), left this part blank the majority of candidates equated their answers to parts (a) and (b) with nearly all who were successful in part (b) correctly determining tha ${ }^{k=\frac{5}{16}}$. t
	Total	13	

