1. Use the trapezium rule, with 3 strips each of width 2, to estimate the value of

2.

The diagram shows part of the curve $y = -3 + 2\sqrt{x+4}$. The point *P*(5, 3) lies on the curve. Region *A* is bounded by the curve, the *x*-axis, the *y*-axis and the line x = 5. Region *B* is bounded by the curve, the *y*-axis and the line y = 3.

i. Use the trapezium rule, with 2 strips each of width 2.5, to find an approximate value for the area of region *A*, giving your answer correct to 3 significant figures.

[3]

[4]

ii. Use your answer to part (i) to deduce an approximate value for the area of region B.

[2]

iii. By first writing the equation of the curve in the form x = f(y), use integration to show that the exact area of region *B* is $\frac{14}{3}$.

[7]

3. i. Use the trapezium rule, with 4 strips each of width 1.5, to estimate the value of

$$\int_4^{10} \sqrt{2x-1} \,\mathrm{d}x$$

giving your answer correct to 3 significant figures.

[4]

ii. Explain how the trapezium rule could be used to obtain a more accurate estimate.

[1]

i. The curve $y = 3^x$ can be transformed to the curve y 3^{x-2} by a translation. Give details of the translation.

[2]

ii. Alternatively, the curve $y = 3^x$ can be transformed to the curve $y = 3^{x-2}$ by a stretch. Give details of the stretch.

[2]

iii. Sketch the curve $y = 3^{x-2}$, stating the coordinates of any points of intersection with the axes.

iv. The point *P* on the curve $y = 3^{x-2}$ has *y*-coordinate equal to 180. Use logarithms to find the *x*-coordinate of *P*, correct to 3 significant figures.

[3]

v. Use the trapezium rule, with 2 strips each of width 1.5, to find an estimate for $J_{13^{x-2}dx}$. Give your answer correct to 3 significant figures.

[3]

[1]

(a) Use the trapezium rule, with four strips each of width 0.25, to find an approximate value for

$$\int_0^1 \frac{1}{\sqrt{1+x^2}} \, \mathrm{d}x$$

- (b) Explain how the trapezium rule might be used to give a better approximation to the integral given in part (a).
- Use the trapezium rule, with 4 strips each of width 0.2, to find an estimate for (a) $\int_{0}^{0.8} \cos x dx$, where *x* is in radians. Give your answer correct to 3 significant figures. [4]
 - (b) Explain, with the aid of a sketch, why the value from part (a) is an under-estimate. [2]
- 7. Fig. 1 shows a garden that is to be designed to include a lawn and a flowerbed.

4.

5.

6.

The lawn can be modelled using four trapezia, as shown in Fig. 2. Each trapezium has a width of 1.5 m, and the lengths of the parallel sides are 8.0 m, 8.5 m, 8.2 m, 8.4 m and 8.6 m respectively.

(a) (i) Use the trapezium rule with 4 strips to estimate the area of the lawn.	[2]
--	-----

(ii) Given that lawn seed costs £0.49 per square metre, estimate the total cost of the lawn seed required.

[2]

[1]

- (b) Suggest two limitations of this model.
- (c) Suggest one possible refinement of this model.

The flowerbed can be modelled as the segment of a circle with radius 3.2 m. Fertiliser costs $\pounds 0.17$ per square metre.

(d) Estimate the total cost of fertiliser required to cover the entire area of the flowerbed. [5]

8. (i) Use Simpson's rule with four strips to find an approximation to

© OCR 2017.

giving your answer correct to 4 significant figures.

(ii) Deduce an approximation to

$$\int_{1}^{9} \ln(x^{-1}) \ln(x^{2} + 8x + 16) dx$$

giving your answer correct to 4 significant figures.

(a) Use the trapezium rule, with four strips each of width 0.5, to estimate the value of

giving your answer correct to 3 significant figures.

- (b) Explain how the trapezium rule could be used to obtain a more accurate estimate. [1]
- (a) Use the trapezium rule, with two strips of equal width, to show that

$$\int_{0}^{4} \frac{1}{2 + \sqrt{x}} \, \mathrm{d}x \approx \frac{11}{4} - \sqrt{2} \quad .$$
 [5]

(b) Use the substitution $x = u^2$ to find the exact value of

$$\int_0^4 \frac{1}{2 + \sqrt{x}} \,\mathrm{d}x \qquad [6]$$

$$\ln 2 \approx k + rac{\sqrt{2}}{4}$$
 ,

where k is a rational number to be determined.

[3]

[2]

 $\int_{-9}^{9} \ln x \ln(x+4) \mathrm{d}x,$

[4]

[2]

 $\int e^{x^2} dx$

10.

9.

Question	Answer/Indicative content	Marks	Part marks and guidance			
1	$\frac{1}{2} \times 2 \times (^{8}/_{5} + 2(^{8}/_{7} + ^{8}/_{9}) + ^{8}/_{11})$	M1	Attempt the 4 correct <i>y</i> -coordinates, and no others	M0 if other <i>y</i> -values also found (unless not used) Allow decimal equivs		
		M1	Attempt correct trapezium rule, any <i>h</i> , to find area between <i>x</i> = 5 and <i>x</i> = 11	Correct structure required, including placing of y -values The 'big brackets' must be seen, or implied by later working – this may not be clear if using $h = 2$ so allow BOD for eg $\frac{1}{2} \times 2 \times (\frac{8}{5} + \frac{8}{11}) + 2(\frac{8}{7} + \frac{8}{9})$ Could be implied by stating general rule in terms of y_0 etc, as long as these have been attempted elsewhere and clearly labelled Could use other than 3 strips as long as of equal width Using x-values is M0 Can give M1, even if error in evaluating y-values as long correct intention is clear Allow BoD if first or last y -value incorrect, unless clearly from an incorrect x -value		
		M1	Use correct <i>h</i> (soi) for their <i>y</i> -values (must have equally spaced <i>x</i> -values), to find area between $x = 5$ and $x = 11$	Must be in attempt at trap rule, not Simpson's rule As $h = 2$, allow BOD if $\frac{1}{2} \times 2$ not seen explicitly Allow if muddle over placing <i>y</i> -values, including duplication (but M0 for <i>x</i> -values) Allow if $\frac{1}{2}$ missing Allow other than 3 strips, as long as <i>h</i> is consistent		

Question		Answer/Indicative content	Marks	Part marks and guidance		
		= 6.39	A1	Obtain 6.39, or better	Allow answers in the range [6.390, 6.391] if > 3sf	
				Examiner's Comments This was a straightforward start to the paper and most candidates gained full marks on the question. Some candidates lost the final mark by failing to work to the required degree of accuracy throughout. Candidates are strongly advised to use exact values in their calculations rather than truncated decimals. Candidates also lost marks through using two strips of width 3, rather than the required three strips of width 2, but they were still able to gain some credit. There were very few candidates who first attempted integration, which is an improvement on previous series.	Answer only is $0/4$ Using 2 strips of width 3 is MOM1M1 and not a misread Using the trap rule on result of an integration attempt is 0/4 – this includes functions such as $8x$ even if integration is not explicit Using 3 separate trapezia can get full marks – if other than 3 trapezia then mark as above However, using only one trapezium is $0/4$	
		Total	4			

Question		Answer/Indicative content	Marks	Part marks and guidance		
2	i	0.5 × 2.5 × (1 + 2(−3 + 2√6.5) + 3)	M1*	Attempt <i>y</i> -values at <i>x</i> = 0, 2.5, 5 only	M0 if additional <i>y</i> -values found, unless not used y_1 can be exact or decimal (2.1 or better) Allow M1 for using incorrect function as long as still clearly <i>y</i> -values that are intended to be the original function eg $-3 + 2\sqrt{x} + 4$ (from $\sqrt{(x + 4)} = \sqrt{x} + \sqrt{4}$)	
	i	= 10.2	M1d*	Attempt correct trapezium rule, inc <i>h</i> = 2.5	Fully correct structure reqd, including placing of y -values The 'big brackets' must be seen, or implied by later working Could be implied by stating general rule in terms of y_0 etc, as long as these have been attempted elsewhere and clearly labelled Using <i>x</i> -values is M0 Can give M1, even if error in evaluating <i>y</i> -values as long correct intention is clear	
	i		A1	Obtain 10.2, or better Examiner's Comments Candidates were familiar with the trapezium rule and the majority were able to apply it accurately to the given situation. A surprising minority rounded the final answer to 10.3 rather than 10.2. This could be ignored provided that a correct, more accurate, answer had been seen previously. Slips in calculating the <i>y</i> values were condoned, as long as there was sufficient working to convey the correct intent.	Allow answers in the range [10.24, 10.25] if > 3sf A0 if exact surd value given as final answer Answer only is 0/3 Using 2 separate trapezia can get full marks Using anything other than 2 strips of width 2.5 is M0 Using the trapezium rule on result of an integration attempt is 0/3	
	ii	(5 × 3) – 10.2 = 4.8	M1	Attem pt area of r ectangle - their (i)	As long as 0 < their (i) < 15	

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and guidance	
		ii		A1FT	Obtain 4.8, or better Examiner's Comments The overwhelming majority of candidates gained both of the marks available, especially as full credit could still be awarded following an incorrect result to part (i).	Allow for exact surd value as well Allow answers in range [4.75, 4.80] if > 2sf
			$x = \frac{1}{4} (y^2 + 6y - 7)$	M1	Attempt to write as $x = f(y)$	Must be correct order of operations, but allow slip with inverse operations eg + / –, and omitting to square the $\frac{1}{2}$ Allow y^2 + 9 from an attempt to square y + 3, even if $(y$ + 3) ² is not seen explicitly first Allow maximum of 1 error
				A1	Obtain $x = \frac{1}{4}(y^2 + 6y - 7)$ aef	Allow A1 as soon as any correct equation seen in format $x = f(y)$, eg $x = \frac{1}{4}(y+3)^2 - 4$ or $x = \frac{1}{4}(y^2+6y+9) - 4$, and isw subsequent error

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and guidance	
		iii	area = $\left[\frac{1}{12}y^3 + \frac{3}{4}y^2 - \frac{7}{4}y\right]^3$	M1*	Attempt integration of f(y)	Expand bracket and increase in power by 1 for at least two terms (allow if constant term disappears) Independent of rearrangement attempt so MOM1 is possible Can gain M1 if their f(y) has only two terms, as long as both increase in power by 1 Allow M1 for $k(y + 3)^3$, any numerical k, as the integral of $(y + 3)^2$ or M1 for k $(\frac{1}{2}(y + 3))^3$ from $(\frac{1}{2}(y + 3))^2$ oe if their power
		iii		A1	Obtain $\frac{1}{12}y^3 + \frac{3}{4}y^2 - \frac{7}{4}y$ aef	is other than 2 Or $\frac{1}{12}(y+3)^3 - 4y$ A0 if constant term becomes $-\frac{7}{4}x$ not $-\frac{7}{4}y$
		iii		B1	State or imply limits are <i>y</i> = 1, 3	Stated, or just used as limits in definite integral Allow B1 even if limits used incorrectly (eg wrong order, or addition) Allow B1 even if constant term is $-\frac{7}{4}x$ (or their <i>cx</i>)

Qı	uestio	n	Answer/Indicative content	Marks	arks Part marks and guidance	
		iii	$= \frac{15}{4} - \left(-\frac{11}{12}\right)$	M1d*	Attempt correct use of limits	Correct order and subtraction Allow M1 (BOD) if <i>y</i> limits
						used in $-\frac{7}{4}x$ (or their <i>cx</i>), but M0 if $x = 0$, 5 used Minimum of two terms in <i>y</i> Only term allowed in <i>x</i> is their <i>c</i> becoming <i>cx</i>
						Allow processing errors eg
						$(\frac{1}{12} \times 3)^3$ fo $\frac{1}{12} \times 3^3$
						Answer is given so M0 if $\frac{14}{3}$ appears with no evidence of use of limits Minimum working required
						is $\frac{15}{4} + \frac{11}{12}$ Allow M1 if using decimals
						(0.92 or better fo $\frac{11}{12}$) M0 if using lower limit as y = 0, even if y = 3 is also used Limits must be from attempt at y-values, so M0 if using 0 and 5

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
	$= \frac{14}{3} \mathbf{AG}$	A1	Obtain $\frac{14}{3}$ Examiner's Comments This proved to be a suitably challenging end to the paper, with the most able candidates gaining full credit but the weaker ones struggling to make any kind of progress. Most candidates could attempt to change the subject of the equation but weak algebra skills meant that the result was not always the required equation. Most candidates were then able to make a reasonable attempt at the integration, with the most common error being for the constant term to be integrated with respect to <i>x</i> rather than <i>y</i> . There was a straightforward mark for identifying that the limits were 1 and 3, and candidates then had to use this to attempt the required area. Only the most able candidates were able to provide a convincing demonstration that the area of the region was indeed $14/_3$, as given on the paper.	Must come from exact working ie fractions or recurring decimals - correct notation required so A0 for 0.9166 A0 if $-\frac{7}{4}x$ seen in solution SR for candidates who find the exact area by first integrating onto the <i>x</i> -axis: B4 obtain area between curve and <i>x</i> -axis as 10 ¹ / ₃ B1 subtract from 15 to obtain ¹⁴ / ₃ And, if seen in the solution, M1A1 for <i>x</i> = f(<i>y</i>) as above
	Total	12		

Q	uestio	n	Answer/Indicative content	dicative content Marks Part marks and guidance		nd guidance
3		i	0.5 × 1.5 × (√7 + 2(√10 + √13 + √16) + √19)	B1	State the 5 correct <i>y</i> -values, and no others	B0 if other <i>y</i> -values also found (unless not used) Allow for unsimplified, even if subsequent error made Allow decimal equivs
		i		M1*	Attempt to find area between x = 4 and $x = 10$, using $k(y_0 + y_n + 2(y_1 + + y_{n-1}))$	Correct placing of <i>y</i> -values required <i>y</i> -values may not necessarily be correct, but must be from attempt at using correct <i>x</i> -values (allow 7, 10 etc ie no \checkmark) The 'big brackets' must be seen, or implied by later working Could be implied by stating general rule in terms of y_0 etc, as long as these have been attempted elsewhere and clearly labelled Could use other than 4 strips as long as of equal width (but M0 for just one strip)
		i		M1d*	Use <i>k</i> = 0.5 × 1.5 soi	Or $k = 0.5 \times h$, where h is consistent with the number of strips used

Question		n	Answer/Indicative content	Marks	Part marks and guidance		
Qu		n i	Answer/Indicative content = 21.4	A1	Part marks and Obtain 21.4, or better Examiner's Comments This question was generally very well done, with the majority of the candidates gaining full marks. Candidates generally showed their method clearly, though the brackets were omitted in some solutions, resulting in an incorrect evaluation of their intended expression. Candidates also need to be careful when copying their work from one line to the next; it was not uncommon to see √19 become √9. Another common slip was for √16 to be evaluated as 4 but then used an √4 lin cm	Allow answers in the range [21.40, 21.41] if > 3sf Answer only is 0/4 Using the trap rule on result of an integration attempt is 0/4, even if integration is not explicit Using 4 separate trapezia can get full marks Using other than 4 separate trapezia (but not just 1) can get M2, if done correctly	
					but then used as √4. In an improvement from previous sessions, there were very few candidates who first attempted to integrate the function before applying the trapezium rule.		

Question	Answer/Indicative content	Marks	Part marks and guidance		
	Use more strips / narrower strips	B1	Any reference to increasing no of strips or reducing width of strips	No need to explicitly state that it is over the same interval Ignore any reference to under- / over-estimate Ignore any attempts at sketching the curve Ignore any irrelevant comments, but penalise contradictory statements eg use more strips, which are wider Could give numerical example eg 'use 6 strips', but if giving both width and no of strips then must give total width of 6	
	Total	5			

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and guidance	
4		i	2 (units) in the positive <i>x</i> -direction	M1	Correct direction	Identify that the translation is in the <i>x</i> -direction (either positive or negative, so M1 for eg '2 in negative <i>x</i> -direction') Allow any terminology as long as intention is clear, such as in/on/along the <i>x</i> -axis Ignore the magnitude

Question		Answer/Indicative content	Marks	Part marks and guidance			
	i		A1	Fully correct description	Must have correct magnitude and correct direction, using precise language - such as 'in the <i>x</i> -direction', 'parallel to the <i>x</i> -axis', 'horizontally' or 'to the right' A0 for in/on/along the <i>x</i> -axis etc Allow M1A1 for '2 in the <i>x</i> -direction' as positive is implied A0 for 'factor 2' 'Units' is not required, but A0 for 'places', 'spaces', 'squares' etc Allow in vector notation as well, so M1 for $\binom{k}{0}$ and M1A1 for $\binom{2}{0}$ Examiner's Comments Most candidates could correctly identify that it would be a horizontal translation, thus gaining one mark. To gain the second mark, candidates had to state the correct direction and magnitude. The most efficient and convincing method was to use a vector to describe the translation, and a number of candidates did so. However, most candidates opted to use a worded description instead and a number of those failed to gain the final mark as they did not use mathematically precise language. Phrases such as 'in the <i>x</i> -axis' were condoned for the first mark, but were not given full credit.		

Question	Answer/Indicative content	Marks	Part marks and guidance			
ii	sf $\frac{1}{9}$ in the <i>y</i> -direction	M1	Correct direction, with sf of	Identify that the stretch is in the <i>y</i> -direction, with a scale		
			¹ / ₉ or 9	factor of either $\frac{1}{9}$ or 9 (or equiv in index notation)		
				Allow just ¹ / ₉ or 9, with no mention of 'scale factor' Allow exact decimal equiv		
				for $\frac{1}{9}$ Allow any terminology as long as the intention is clear, such as in/on/along the <i>y</i> -axis		

Question		n	Answer/Indicative content	Marks	Part marks and guidance				
Q		n	Answer/Indicative content	Marks A1	Part marks a	nd guidance Must have correct scale factor and correct direction, using precise language - such as 'in the <i>y</i> -direction', 'parallel to the <i>y</i> -axis' or 'vertically' A0 for in/on/along the <i>y</i> -axis etc Must now have 'scale factor' or 'factor' Allow 'positive <i>y</i> -direction' (not incorrect as graph is wholly above <i>x</i> -axis) Examiner's Comments Describing the transformation by means of a stretch proved to be much more challenging and only the most able candidates gained any credit at all on this part. Whilst some candidates used index manipulation to rewrite the equation in the form $y = k \times 3^x$ others generated a table of values in an attempt to deduce the effect of the stretch. Otherwise correct solutions were sometimes spoiled by the careless use			
						of language, including both omitting to describe 1/9 as a scale factor and also an imprecise description of the direction.			

Question	Answer/Indicative content	Marks	Part marks and guidance			
		B1*	Correct sketch, in both quadrants	Curve must tend towards the negative <i>x</i> -axis, but not touch or cross it, nor a significant flick back upwards If from plotted points then there must be enough of the graph shown to demonstrate the correct general shape, including the negative <i>x</i> -axis being an asymptote Ignore any numerical values given		
	intersect at (0, $\frac{1}{9}$)	B1d*	State (0, ¹ / ₉)	Condone $x = 0$, $y = \frac{1}{2}$ as an alternative, but $x = 0$ must be stated explicitly rather than implied Allow no brackets around the coordinates Allow exact decimal equiv for $\frac{1}{2}$ Allow just $\frac{1}{2}$ as long as marked on the <i>y</i> -axis Allow BOD for ($\frac{1}{2}$, 0) on <i>y</i> -axis, but not if just stated Just being seen in a table of values is not sufficient Ignore any other labelled coordinates Examiner's Comments There were a number of carefully drawn and correct exponential graphs, and many of those with an acceptable graph also correctly gave the <i>y</i> -intercept. However too many candidates, who clearly knew the general shape of the curve, were unable to convey their intention in a sufficiently convincing manner. A		

Q	Question		Answer/Indicative content	Marks	Part marks and guidance			
						number of attempts had neither ruled nor labelled axes. A lack of care when sketching the curve resulted in errors such as vertical asymptotes to the right, horizontal asymptotes nowhere near the <i>x</i> -axis and curves that had a distinct minimum point in the second quadrant. All of these errors resulted in the mark not being awarded. Several candidates did not extend their sketched curve into the second quadrant, and many candidates did not know the shape at all.		
		iv	$log3^{x-2} = log180 \text{ (or } x-2 = log_3180)$ (x-2)log 3 = log180 x-2 = 4.7268 x = 6.73	M1*	Introduce logs and drop power	Can use logs to any base, as long as consistent on both sides, and allow no explicit base as well The power must also be dropped for the M1 Brackets must be seen around the $(x - 2)$, or implied by later working If taking \log_3 then base must be explicit		
		iv		M1d*	Attempt to solve for <i>x</i>	Correct order of operations, and correct operations so M0 for $\log_3 180 - 2$ M0 if logs used incorrectly $eg x - 2 = log(\frac{180}{8})$		

Question	Answer/Indicative content	Marks	Part marks and guidance				
		A1	Obtain 6.73, or better	If > 3sf, allow answer rounding to 6.727 with no errors seen 0/3 for answer only or T&I If rewriting eqn as $3^{x-2} =$ $3^{4.73}$ then 0/3 unless evidence of use of logs to find the index of 4.73 SR If using index rules first then B1 for $3^x = 1620$ M1 for attempting to use logs to solve $3^x = k$ A1 for 6.73 Examiner's Comments Candidates continue to demonstrate proficiency when solving straightforward equations involving logarithms and this was true on this question, with the vast majority of candidates gaining all of the available marks with ease. The most common approach was to use logarithms to base 3, although solutions involving base 10, or even some unspecified base, were also seen. There are still a number of candidates who do not make effective use of brackets, and it was relatively common to see <i>x</i> - 2 log3 rather than (<i>x</i> - 2) log3. Some candidates retrieved this by subsequently using their invisible brackets correctly, whereas others continued as if they were never intended.			

Question	Answer/Indicative content	Marks	Part marks and guidance			
v	$0.5 \times 1.5 \times \{3^{-1} + 2 \times 3^{0.5} + 3^{2}\}$ = 9.60	B1	State the 3 correct <i>y</i> -values, and no others	B0 if other <i>y</i> -values also found (unless not used) Allow for unsimplified, even if subsequent error made Allow decimal equivs		
	Enter text here.	M1	Attempt use of correct trapezium rule to attempt area between <i>x</i> = 1 and <i>x</i> = 4	Correct placing of <i>y</i> -values required <i>y</i> -values may not necessarily be correct, but must be from attempt at using correct <i>x</i> -values The 'big brackets' must be seen, or implied by later working Could be implied by stating general rule in terms of <i>y</i> ₀ etc, as long as these have been attempted elsewhere and clearly labelled Could use other than 2 strips as long as of equal width (but M0 for just one strip) Must have <i>h</i> as 1.5, or a value consistent with the number of strips used if not 2		

Quest	tion	Answer/Indicative content	Marks	Part marks and guidance			
	V		A1	Obtain 9.60, or better (allow 9.6)	Allow answers in the range [9.595, 9.600] if > 3sf Answer only is 0/3 Using the trap. rule on the result of an integration attempt is 0/3, even if integration is not explicit Using two separate trapezia can get full marks Using other than 2 trapezia (but not just 1) can get M1 only Examiner's Comments This final part of the question was also very well answered, with many fully correct solutions being seen. Candidates generally showed their method clearly, and were able to identify the three relevant <i>x</i> -values and attempt the corresponding <i>y</i> -values. The trapezium rule was then usually correctly attempted, although some candidates committed the common error of omitting the necessary brackets. Very few candidates attempted to integrate the function before applying the trapezium rule.		
		Total	12				

Question		n	Answer/Indicative content	Marks		Part marks a	nd guidance
5		а	$\frac{0.25}{2}(1+0.7071+2(0.970+0.8944+0.8))$	B1(AO 1.1)	Obtain all five ordinates and no others: 0.7071,	Accept exact values: 1,	
				M1(AO1. 1a)	0.8944, 1, 0.8, 0.970 Use correct structure for trapezium	$\frac{4}{\sqrt{17}},$ $\frac{2}{\sqrt{5}}, \frac{4}{5}, \frac{1}{\sqrt{2}}$ x	
			0.880	A1(AO1. 1) [3]	rule with <i>h</i> = 0.25 0.880 or	-coordinate s used M0 . Omission of large brackets unless	
					better (0.87 953077)	implied by correct answer M0 Accept 0.88 (0.879 53077)	
		b	"Use smaller intervals" or "use more trapezia"	B1(AO 2.4)			
				[1]			
			Total	4			

Question		1	Answer/Indicative content	Marks	Part marks and guidance			
6		i	0.5×0.2{cos0 + cos0.8 + 2(cos0.2 + cos0.4 + cos0.6)} = 0.715	B1 M1*	State the 5 correct y -values, and no others Attempt to find area between x = 0 and x = 0.8, using $k\{y_0 + y_n + 2(y_1 + + y_{n-1})\}$	B0 if other y-values also found (unless not used) Allow for exact values seen, even if subsequent error made (including evaluating in degree mode) Allow decimal equivs (2dp or better) (1, 0.980, 0.921, 0.825, 0.697); if using 2dp then allow 0.7 rather than 0.70 for final y value Correct placing of y-values required y -values may not necessarily be correct, but must be from attempt at using correct x-values in y = cosx (in radian mode or denmatic subsequent exact exact subsequent exact exact subsequent exact		

Question	Answer/Indicative content	Marks	Part marks and guidance			
		M1d*		mode) The 'big brackets' must be seen, or implied by		
		A1	Use <i>k</i> = 0.5 × 0.2 soi	later working Could be		
		[4]	Obtain 0.715, or better	Implied by stating general rule in terms of <i>y</i> ₀ etc, as long as these have been attempted elsewhere and clearly labelled Could use other than 4 strips as long as of equal width (but M0 for just one strip)		
				Or $k = 0.5$ × h , where h is consistent with the number of strips used Allow answers rounding to 0.715 if >3sf Using 4 separate trapezia can get full		

Question	Answer/Indicative content	Marks	Part marks and guidance
			marks Must see evidence of trapezium rule or 0/4 (integration gives 0.717 to 3sf)
			Working in degrees: B1 if exact values seen (ie cos0.2 etc), but B0 if straight into decimals M1 M1 is then possible as long as it is clear where each value is being placed
			0.5×0.2 {1.00 + 1.00 + 2(1.00 + 1.00 + 1.00} = 0.800 will be 0/4 unless more detail shown
			Examiner's Comments This question was very well answered, with many candidates gaining full marks. The most effective method was to write out the trapezium rule using exact values and then evaluate this on the calculator. Using decimal equivalents often resulted in a loss of accuracy in the final

Q	Question		Answer/Indicative content	Marks	Part marks and guidance		
					answer. The r error was for o use their calcu degree mode radian mode.	nost common candidates to ulator in rather than	
		ii	Graph of <i>y</i> = cos <i>x</i> , with 4 trapezia drawn	B1 [2]	Correct <i>y</i> = cos <i>x</i> graph, with exactly 4 trapezia of roughly equal width	Trapezia must be plausibly [0, 0.8], allow BOD as long as final trapezium ends before $\pi/2$ Curve may be shown beyond x = 0.8, but BO if clearly of the incorrect shape beyond $x =$ 0.8 No need for scale on either axis Exactly four trapezia must be shown, of roughly equal widths, with top vertices on the curve. Not dependent on previous B1 Must refer to the tops of the trapezia so B0 for 'trapezia	

Question	Answer/Indicative content	Marks	Part marks and guidance		
			are below		
			curve' (ie		
			'top' not		
			used) Allow		
			'trapezium'		
			rather than		
			'trapezia'		
			Concave /		
			convex is		
			BO		
			B0 if		
			comparing		
			to exact		
			area		
			B1 for		
			decreasing		
			gradient		
			(but B0 for		
			(but bo loi decreasing		
			decreasing		
			Candidatos		
			diagram as		
			ulagrani as		
			part of their		
			explanation		
			- as long		
			as there		
			was an		
			draw		
			trapezia		
			tnen tney		
			are eligible		
			for the		
			second B1		
			even if B0		
			for the		
			diagram.		
			This could		
			include a		
			single		
			trapezium		
			even if		
			labelled 0 –		
			0.8),		
			several		
			trapezia		
			whose tops		
			are		
I I I		I	I I	1	

Question	Answer/Indicative content	Marks	Part marks and guidance		
				collinear,	
				an incorrect	
				$y = \cos x$	
				graph	
				(including y	
				= sin <i>x</i>) and	
				similar. Use	
				of	
				rectangles	
				to support	
				their	
				explanation	
				however is	
				B0.	
				They could	
				shade gaps	
				on their	
				diagram	
				but some	
				text also	
				required	
				B0 for	
				'some area	
				not	
				calculated'	
				unless	
				clear which	
				area -	
				could be	
				described	
				or shaded	
				ISW any	
				irrelevant	
				comments,	
				but B0 if	
				contradictor	
				y	
				comments	
			Examiner's Co	omments	
			This part of th	e question	
			was less well	answered,	
			due to a lack of	of precision in	
			the explanatio	ns. Some	
			candidates rel	ferred to the	
			tops of the tra	pezia being	
			under the curv	/e, whereas	
			others identifie	ed the areas	
			that had not b	een included	
			in the calculat	ion. Either	
			approach was	condoned.	
	1	l	''	,	

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance		
					as long as there was sufficient detail to be convincing. For the sketch graph, candidates were expected to provide a sketch of y = cosx with four trapezia shown. The most common error was to draw trapezia whose top vertices did not actually lie on the curve, and other errors included drawing just a single trapezium and even attempting to use y = sinx as the curve. Some precise and convincing solutions were seen,but these were in the minority.		
			Total	6			

Qı	uestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
7		а	(a) 0.5 × 1.5 × {8.0 + 8.6 + 2(8.5 + 8.2 + 8.40)} = 50.1	M1(AO1. 1a) A1(AO1. 1) [2]	Attempt use of correct trapezium rule Obtain correct area		
		а	(b) 50.1 × 0.49 = £24.55	B1ft(AO1 .1) [1]	Obtain cost of £24.55, ft their area		
		b	Could be under-estimate as modeling tops of trapezia with straight lines Lawn seed may only be sold in fixed volumes so may not be able to buy exact volume needed	B1(AO3. 5b) B1(AO3. 5b) [2]	Limitation based on use of trapezium rule Limitation based on buying lawn seed	Accept any two sensible comments	
		С	Any sensible refinement	B1(AO3. 5c) [1]	Eg Use trapezium rule with more strips		

Q	uestio	n	Answer/Indicative content	Marks		Part marks and guidance		
		d	2sin ⁻¹ (0.9375) = 2.43 rads	M1(AO3. 1b)	Attempt to find angle (rads or degs)	Could use cosine rule		
				A1(AO1.	degey	Allow 1.22		
				1)	Obtain 2.43 rads, or	rads or 69.6°		
			$0.5 \times 3.2^2 \times (2.43 - \sin 2.43)$ = 9.10	M1(AO1. 1a)	139°			
					Attempt complete			
				A1(AO1.	method to			
				1)	find area of segment	Allow 9.1		
				B1ft(AO				
			9.10 × 0.17 = £1.55	3.2a)	Obtain 9.10 (m ²)	Must include		
				[5]		units		
					Obtain cost of £1.55, ft their area			
			Total	11				

Q	uestion	Answer/Indicative content	Marks	Part marks and guidance			
8	i	Attempt calculation of form $k(y_0 + 4y_1 + 2y_2 + 4y_3 + y_4)$ Obtain $k(\ln 1 \ln 5 + 4 \ln 3 \ln 7 + 2 \ln 5 \ln 9 + 4 \ln 7 \ln 11 + \ln 9 \ln 13)$ Use $k = \frac{2}{3}$ Obtain 26.62	M1 A1 A1 A1	Any non-zero constant k with attempts at y values (in terms of ln or decimals); M0 if attempt does not involve exactly four strips; M0 if each y value initially 'amended', to ln($2x + 4$) for example Or equiv involving decimals indicating use of correct values			
			[4]	Allow greater accuracy 26.6159; any value rounding to 26.62 with no errors seen Examiner's Comments Part (i) was generally answered very well with candidates using the formula for Simpson's rule accurately. Some stated the expression to be evaluated using logarithms and proceeded to produce the answer. Others set out the values to be used in decimal form, sometimes with the values presented in a table. Errors did occur, presumably the result of careless use of calculator. There were very few instances of candidates using the wrong number of strips or of associating the coefficients 2 and 4 with the incorrect y values. There were a few instances of candidates trying to 'simplify' the y values where In3In7 , for example, became In10 or In 21.			

Question	Answer/Indicative content	Marks	Part marks and guidance		
	State or imply that integrand now involves –In <i>x</i> or 2ln(<i>x</i> + 4) or both Obtain –53.23 or –53.24 as final answer	M1 A1ft [2]	Following their Simpson rule answer from (i), ie –2 times their answer; allow greater accuracy; correct answer with no working earns B2; second use of Simpson's rule leading to correct answer earns B2, but B0 if incorrect; concluding with 53.23 or 53.24 (perhaps with some reference to area below axis) is A0 Examiner's Comments Part (ii) was a slightly more challenging request and fewer than half the candidates were able to note that logarithm properties mean that the answer to part (ii) is –2 times the answer to part (i). Answers such as 708.6 and 0.0014 were occasionally seen. Some candidates used Simpson's rule again and those doing so had to produce the correct answer to record both marks. Some candidates, having obtained the value –53.24 or –53.23 (either of which was acceptable) decided to drop the minus sign, often referring to an area below the x-axis. But this question involves a purely numerical request and losing the minus sign meant the loss of the accuracy mark.		
	Total	6			

Ques	stion	Answer/Indicative content	Marks		Part marks a	nd guidance
9	a	$0.5 \times 0.5\{(e^{0} + e^{2^{2}}) + 2(e^{0.5^{2}} + e^{1^{2}} + e^{1.5^{2}})\}$ = 20.6	B1 (AO 1.1) M1 (AO 1.1a) A1 (AO 1.1) [3]	Obtain all five ordinates and no others Use correct structure for trapezium rule with <i>h</i> = 0.5 Obtain 20.6, or better	Allow decimal equivs (1, 1.284, 2.718, 9.488, 54.598) – 3sf or better B0 if other ordinates seen unless clearly not intended to be used Big brackets need to be seen or implied (40.9 is the result of no brackets) <i>y</i> -values must be correctly placed Must be using attempts at all 5 <i>y</i> -values Must be attempting area between $x = 0$ and $x = 2$ Allow more accurate answers in the range [20.64, 20.65)	

Qı	uestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
					This question was also very well answered, with many fully correct solutions seen. The most successful candidates started by identifying the relevant <i>x</i> values, used exact <i>y</i> values rather than decimal approximations and made effective use of brackets.		
		b	Use more trapezia, of a narrower width, over the same interval	B1 (AO 2.4) [1]	Convincing reason Examiner's C The best expl referred to us trapezia, of a width, over the interval. Many mentioned eit more trapezia the width; givi reason was co the mark sche	Condone just 'more trapezia' or 'narrower trapezia' Could refer to 'strips' not 'trapezia' omments anations ing more narrower e same y candidates her using or decreasing ng just one ondoned in eme.	
			Total	4			

Qı	uestio	n	Answer/Indicative content	Marks		nd guidance	
10		а	h = 2	B1(AO 1.1)E			
			$\frac{h}{2}\left[\frac{1}{2} + \frac{1}{4} + 2\left(\frac{1}{2+\sqrt{2}}\right)\right]$	M1(AO 2.1)E	Use of correct formula	Condone one error	
			$I \approx \frac{3}{4} + \frac{2}{2 + \sqrt{2}}$	A1(AO 1.1)C	with correct (exact) y –values		
			$\frac{1}{2+\sqrt{2}} = \frac{\left(2-\sqrt{2}\right)}{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)} = \frac{2-\sqrt{2}}{2}$	M1(AO 3.1a)E			
			$I \approx \frac{3}{4} + \left(2 - \sqrt{2}\right) = \frac{11}{4} - \sqrt{2}$	A1(AO 2.2a)A [5]	Correct method for rationalisin g the denominato r of their surd together with correct simplificatio n AG – at	Must be convincing as AG in values	
					step of intermediat e working (from application of trapezium rule to given result)		
					Examiner's Co Candidates fo extremely acc nearly all corre		

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance		
					the given result are reminded 'show that' que suitable working shown and state $\frac{2}{2}\left[\frac{1}{2}+\frac{1}{4}+2\left(\frac{1}{4}+2\left($	It. Candidates though that in estions ng must be atements such $\left[\frac{1}{\sqrt{2}}\right] = \frac{11}{4} - \sqrt{2}$ not	
		b	$x = u^2 \Rightarrow dx = 2u du$	M1*(AO 3.1a)E	An attempt at integration by sub – allow any genuine attempt (as a minimum	Limits not required for first four marks	
			$\int_{0}^{4} \frac{\mathrm{d}x}{2 + \sqrt{x}} = \int_{0}^{2} \frac{2u}{2 + u} \mathrm{d}u$	A1(AO 1.1)C	differentiate their sub.		
			$=2\int_{0}^{2}\frac{2+u-2}{2+u}du=2\int_{0}^{2}1-\frac{2}{2+u}du$	Dep*M1(AO 2.1)C	and remove all <i>x</i> 's) Correct	Or use t =	
			$=2\left[u-2\ln(2+u)\right]_{0}^{2}$	A1ft(AO 1.1)A	integral in terms of <i>u</i>	2 + <i>u</i> to obtain integral of	
					Re–writes integral in the form	the form	
			= 2{(2 – 2ln(2 + 2)) – (0 – 2 ln (2 + 0))}	M1(AO 1.1)C	$\int a + \frac{b}{1+u} du$	$\int a + \frac{b}{4} dt$	
			= 2(2 – 2ln 2)	A1(AO 2.2a)A	integrates their $\int a + \frac{b}{1+u} du$	$\int \frac{2}{t} - \frac{1}{t} dt$ $= 2t - 4 \ln t$	
				[6]	Uses correct limits correctly (dependent on both previous M		

Question	Answer/Indicative content	Marks	Part marks and guidance		
			marks) oe e.g. 4 – 4 ln 4 + 4 ln 2		
			Examiner's Comments While nearly all candidates used the substitution correctly and re-wrote the integra $\int_0^2 \frac{2u}{2+u} du$ many could I as not deal with the resulting improper fraction in the integrand. The most		
			candidates $\frac{2u}{2+u}$ either by re-wrote using long division or realising that $\frac{2u}{2+u} = \frac{4+2u-4}{2+u} = 2 - \frac{4}{2+u}$.		
			While examiners noted that some candidates employed more extreme methods (for example, further substitutions and the method of integration by parts) these were usually unsuccessful.		

Question		n	Answer/Indicative content	Marks	Part marks and guidance	
		C	$\frac{11}{4} - \sqrt{2} \approx 2(2 - 2\ln 2)$ $\ln 2 \approx \frac{5}{16} + \frac{\sqrt{2}}{4}$	M1(AO 1.1a)C A1(AO 2.1a)A [2]	Setting the given result approx. equal to their (b) $k = \frac{5}{16}$ $k = \frac{5}{16}$ Examiner's Comments While some, who had struggled with part (b), left this part blank the majority of candidates equated their answers to parts (a) and (b) with nearly all who were successful in part (b) correctly determining 	
			Total	13		