- Two particles A and B have position vectors \mathbf{r}_A metres and \mathbf{r}_B metres at time t seconds, where $\mathbf{r}_A = \ell^2 \mathbf{i} + (3t-1)\mathbf{j} \text{ and } \mathbf{r}_B = (1-2\ell^2)\mathbf{i} + (3t-2\ell^2)\mathbf{j}, \text{ for } t \ge 0.$
 - (a) Find the values of t when A and B are moving with the same speed. [5]
 - (b) Show that the distance, d metres, between A and B at time t satisfies

$$\hat{\sigma} = 13\hat{t} - 10\hat{t} + 2.$$
 [3]

(c) Hence find the shortest distance between A and B in the subsequent motion. [6]

END OF QUESTION paper

© OCR 2017. Page 1 of 3

Mark scheme

Question		Answer/Indicative content	Marks	Guidance		
		$\dot{\mathbf{r}}_A = 2t\mathbf{i} + 3\mathbf{j}$	B1 (AOs 1.1)			
		$\dot{\mathbf{r}}_B = -4t\mathbf{i} + (3-4t)\mathbf{j}$	B1 (AOs 1.1)			
1	а	$(2\hbar^2 + 9 = (-4\hbar^2 + (3 - 4\hbar^2))^2$	M1 (AOs 3.1a) M1 (AOs 1.1)	$ \dot{\mathbf{r}}_{A} = \dot{\mathbf{r}}_{B} $ with/without square root		
		$t = 0 \text{ or } t = \frac{6}{7}$	A1 (AOs 1.1) [5]	Expand and attempt to solve quadratic in t (to obtain two solutions) Both values of t must be given		
		$\mathbf{r}_{A} - \mathbf{r}_{B} = (3\ell - 1)\mathbf{i} + (-1 + 2\ell)\mathbf{j}$	*M1 (AOs 3.1a)	Consider $\pm (\mathbf{r}_A - \mathbf{r}_B)$	Condone one sign error	
	b	$\mathcal{O}^{\ell} = (3\ell^{\ell} - 1)^2 + (-1 + 2\ell^{\ell})^2$	dep*M1 (AOs 1.1) A1 (AOs	Use of $\partial^2 = \mathbf{r}_A - \mathbf{r}_B ^2$		
		$=9t^4-6t^2+1+4t^4+1=13t^4-10t^2+2$	2.2a) [3]	AG Expand correctly to given answer	Must show at least one intermediate step	
		$\frac{\mathrm{d}}{\mathrm{d}t}(d^2) = 52t^3 - 20t$	B1 (AOs 3.1a)			
		$\frac{\mathrm{d}}{\mathrm{d}t}(d^2) = 0 \Longrightarrow t = \dots$	*M1 (AOs 2.1a)	Set their derivative = 0 and solve for <i>t</i>		
	С	$t = 0 \text{ and } t = \sqrt{\frac{5}{13}}$	A1 (AOs 1.1)			
		Test nature of stationary point with correct value(s) of <i>t</i>	B1 (AOs 2.1)	Both values correct; acc 0.620 e.g. $\frac{d^2}{dt^2}(d^2) = 156t^2$		Ignore any mention of negative values of t
			dep*M1 (AOs	$\frac{dt^2}{dt^2} \left(\frac{dt}{dt^2} \right) = 130t - 20 \times 0$		

© OCR 2017. Page 2 of 3

	Substitute their non-zero t into d or d $d = \frac{1}{\sqrt{13}} \text{ or } 0.277$	1.1) A1 (AOs 2.2a) [6]	when $t^2 = \frac{5}{13}$ so minimum Dependent on all previous marks	Or any other valid method 0.277350
	Total	14		

© OCR 2017. Page 3 of 3