1. Two particles A and B have position vectors \mathbf{r}_{A} metres and \mathbf{r}_{B} metres at time t seconds, where

$$
\mathbf{r}_{A}=f \mathbf{i}+(3 t-1) \mathbf{j} \text { and } \mathbf{r}_{\mathrm{B}}=(1-2 f) \mathbf{i}+(3 t-2 f) \mathbf{j} \text {, for } t \geq 0 .
$$

(a) Find the values of t when A and B are moving with the same speed.
(b) Show that the distance, d metres, between A and B at time t satisfies

$$
d^{2}=13 t^{2}-10 t^{2}+2
$$

(c) Hence find the shortest distance between A and B in the subsequent motion.

Mark scheme

Question		Answer/Indicative content	Marks	Guidance	
1	a	$\begin{aligned} & \dot{\mathbf{r}}_{A}=2 t \mathbf{i}+3 \mathbf{j} \\ & \dot{\mathbf{r}}_{B}=-4 t \mathbf{i}+(3-4 t) \mathbf{j} \\ & (2)^{2}+9=(-4)^{2}+(3-4)^{2} \\ & 7 t-6 t=0 \Rightarrow t=\ldots \\ & t=0 \text { or } t=\frac{6}{7} \end{aligned}$	B1 (AOs 1.1) B1 (AOs 1.1) M1 (AOs 3.1a) M1 (AOs 1.1) A1 (AOs 1.1)	$\left\|\dot{\mathbf{r}}_{A}\right\|=\left\|\dot{\mathbf{r}}_{B}\right\|$ with/without square root Expand and attempt to solve quadratic in t (to obtain two solutions) Both values of t must be given	
	b	$\begin{aligned} & r_{A}-r_{B}=(3 t-1) i+(-1+2 t) \mathrm{j} \\ & d^{t}=\left(3 t^{2}-1\right)^{2}+(-1+2 t)^{2} \\ & =9 t^{t}-6 t+1+4 t^{2}+1=13 t^{t}-10 t+2 \end{aligned}$	*M1 (AOs 3.1a) dep*M1 (AOs 1.1) A1 (AOs 2.2a)	Consider $\pm\left(r_{A}-r_{B}\right)$ Condon error Use of $d^{2}=\left\|r_{A}-r_{B}\right\|^{2}$ AG Expand correctly to given answer Must show one inter	one sign vat least ediate step
		$\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} t}\left(d^{2}\right)=52 t^{3}-20 t \\ & \frac{\mathrm{~d}}{\mathrm{~d} t}\left(d^{2}\right)=0 \Rightarrow t=\ldots \\ & t=0 \text { and } t=\sqrt{\frac{5}{13}} \end{aligned}$		Set their derivative $=0$ and solve for t Both values correct; accept 0.620... e.g. $\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left(d^{2}\right)=156 t^{2}-20>0$	Ignore any mention of negative values of t

	Substsitute their non-zero t into d or d^{R} $d=\frac{1}{\sqrt{13}} \text { or } 0.277$	1.1) A1 (AOs 2.2a) [6]	when $t^{2}=\frac{5}{13}$ so minimum Dependent on all previous marks	Or any other valid method $0.277350 \ldots$
	Total	14		

