1. The acceleration of a particle P moving in a straight line is $\left(t^{2}-9 t+18\right) \mathrm{ms}^{-2}$, where t is the time in seconds.
i. Find the values of t for which the acceleration is zero.
ii. It is given that when $t=3$ the velocity of P is $9 \mathrm{~ms}^{-1}$. Find the velocity of P when $t=0$.
iii. Show that the direction of motion of P changes before $t=1$.
2. A particle P moves in a straight line. The displacement of P from a fixed point on the line is $\left(t^{t}-2 t^{3}\right.$ $+5) \mathrm{m}$, where t is the time in seconds. Show that, when $t=1.5$,
i. Pis at instantaneous rest,
ii. the acceleration of P is $9 \mathrm{~m} \mathrm{~s}^{-2}$.
3. A particle P moves in a straight line. At time t s after passing through a point O of the line, the displacement of P from O is $x \mathrm{~m}$. Given that $x=0.06 t^{\beta}-0.45 t-0.24 t$, find
i. the velocity and the acceleration of P when $t=0$,
ii. the value of x when P has its minimum velocity, and the speed of P at this instant,
iii. the positive value of t when the direction of motion of P changes.
4. A particle P travels in a straight line. The velocity of P at time t seconds after it passes through a fixed point A is given by $\left(0.6 f^{2}+3\right) \mathrm{ms}^{-1}$. Find
i. the velocity of P when it passes through A,
ii. the displacement of P from A when $t=1.5$,
iii. the velocity of P when it has acceleration $6 \mathrm{~ms}^{-2}$.
5. A particle P moves in a straight line on a horizontal surface. P passes through a fixed point O on the line with velocity $2 \mathrm{~m} \mathrm{~s}^{-1}$. At time ts after passing through O, the acceleration of P is $(4+12 t) \mathrm{m} \mathrm{s}^{-2}$.
i. Calculate the velocity of P when $t=3$.
ii. Find the distance $O P$ when $t=3$.

A second particle Q, having the same mass as P, moves along the same straight line. The displacement of Q from O is $\left(k-2 t^{3}\right) \mathrm{m}$, where k is a constant. When $t=3$ the particles collide and coalesce.
iii. Find the value of k.
iv. Find the common velocity of the particles immediately after their collision.
6.

A particle is moving along a straight line. The motion of the particle is modelled by the velocity-time graph shown above, where $v \mathrm{~m} \mathrm{~s}^{-1}$ is the velocity of the particle at time $t \mathrm{~s}$ after it passes through a point A.
(a) Describe the motion of the particle between times $t=0$ and $t=8$.
(b) Calculate the acceleration of the particle at time $t=3$.
(c) Find the displacement of the particle from A at time $t=16$.

A second model for the motion of the particle is given by $v=a t^{2}+b t+12$, where a and b are constants. It is given that the two models agree on the value of v at times $t=0, t=6$ and $t=$ 16.
(d) Find the values of a and b.
(e) Hence find, according to this second model,

- an expression in terms of t for the displacement of the particle from A,
- the distance travelled by the particle from its position when $t=0$ to its position when $=16$.

Calculate the time when the two models agree on the acceleration of the particle in the interval $0 \leq t \leq 8$.
7. A particle moves in a straight line on a horizontal surface. At time t s after being released from rest at a point O on the line, the particle has a velocity $v \mathrm{~m} \mathrm{~s}^{-1}$ and a displacement from O of x m . It is given that

$$
v=0.8 t^{\beta}-4 t+5.6 t .
$$

Find the positive values of t at which the particle has its maximum and minimum velocities, and calculate the values of these velocities.
(ii) Express x in terms of t, and hence find the distance travelled by the particle while it is dii) decelerating.

The diagram shows the (t, v) graphs for two particles A and B which move on the same straight line. The units of v and t are $\mathrm{m} \mathrm{s}^{-1}$ and s respectively. Both particles are at the point S on the line when $t=0$. The particle A is initially at rest, and moves with acceleration $0.18 t \mathrm{~m}$ s^{-2} until the two particles collide when $t=16$. The initial velocity of B is $U \mathrm{~m} \mathrm{~s}^{-1}$ and B has variable acceleration for the first five seconds of its motion. For the next ten seconds of its motion B has a constant velocity of $9 \mathrm{~m} \mathrm{~s}^{-1}$; finally B moves with constant deceleration for one second before it collides with A.
i. Calculate the value of t at which the two particles have the same velocity.

For $0 \leqslant t \leqslant 5$ the distance of B from S is $\left(U t+0.08 \beta^{\beta}\right) \mathrm{m}$.
ii. Calculate U and verify that when $t=5, B$ is 25 m from S.
iii. Calculate the velocity of B when $t=16$.
9.

A particle P is moving along a straight line with constant acceleration. Initially the particle is at O. After $9 \mathrm{~s}, P$ is at a point A, where $O A=18 \mathrm{~m}$ (see diagram) and the velocity of P at A is 8 ms^{-1} in the direction $\overrightarrow{O A}$.
(a) (i) Show that the initial speed of P is $4 \mathrm{~ms}^{-1}$.
(ii) Find the acceleration of P.
B is a point on the line such that $O B=10 \mathrm{~m}$, as shown in the diagram.
(b) Show that P is never at point B.

A second particle Q moves along the same straight line, but has variable acceleration. Initially Q is at O, and the displacement of Q from O at time t seconds is given by

$$
x=a t^{\beta}+b t^{2}+c t,
$$

where a, b and c are constants.
It is given that

- the velocity and acceleration of Q at the point O are the same as those of P at O,
- Q reaches the point A when $t=6$.
(c) Find the velocity of Q at A.

10. The velocity $v \mathrm{~m} \mathrm{~s}^{-1}$ of a car at time $t s$, during the first 20 s of its journey, is given by $v=k t+$ $0.03 t^{2}$, where k is a constant. When $\mathrm{t}=20$ the acceleration of the car is $1.3 \mathrm{~m} \mathrm{~s}^{-2}$. For $t>20$ the car continues its journey with constant acceleration $1.3 \mathrm{~m} \mathrm{~s}^{-2}$ until its speed reaches 25 m s^{-1}.
(a) Find the value of k.
(b) Find the total distance the car has travelled when its speed reaches $25 \mathrm{~m} \mathrm{~s}^{-1}$.
11. A particle P moves along the x-axis. At time t seconds the velocity of P is ms^{-1}, where $v=$ $2 t^{4}+k t-4$.

The acceleration of P when $t=2$ is $28 \mathrm{~ms}^{-2}$.
(a) Show that $k=-9$.
(b) Show that the velocity of P has its minimum value when $t=1.5$.

When $t=1, P$ is at the point $(-6.4125,0)$.
(c) Find the distance of P from the origin O when P is moving with minimum velocity.

Mark scheme

Question		Answer/Indicative content	Marks	Part marks and guidance	
1	i	$(t-3)(t-6)=0$ $t=3,6$	M1 A1	Solve 3 term QE, 2 correct coefficients if factorising, or using formula $9+/-\sqrt{ } 9 / 2$ "By inspection" both values M1A1, one value MOAO Examiner's Comments Nearly all candidates gained both marks, getting their answers via factorisation.	
	ii	$v=\int(f-9 t+18) \mathrm{d} t$ $v=t / 3-9 t / 2+18 t(+c)$ $3^{3} / 3-9 \times 3^{2} / 2+18 \times 3+c=9$ $(v=)-13.5 \mathrm{~m} \mathrm{~s}^{-1}$	M1* A1 D*M1 A1	Attempts integration of $a(t) \mathrm{d} t$, maximum one wrong term Accept omission of $+c$ Uses $4(3)=9$ Must be negative, and goes beyond $c=-13.5$ Examiner's Comments Attempts to use constant acceleration were rare. Nearly all candidates, correctly, went beyond their value of the integration constant, explicitly finding vat time zero.	
	iii iii	$k(1)=1 / 3-9 / 2+18-13.5=0.333$ Changed sign so direction of motion has changed	M1 A1	Finds $K(1)(=1 / 3)$ Accurate values $(v(0)=-13.5, v(0.5)=-5.58, v(0.9)=-0.702)$ Examiner's Comments While most candidates started well, many did not make explicit the link between the change of sign for v and a change in direction of	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& motion. Finding a value of \(t\) when \(v\) was zero was not regarded as showing a change of direction. \& \\
\hline \& \& Total \& 8 \& \& \\
\hline 2 \& i \& \[
\begin{aligned}
\& v=\mathrm{d}\left(t^{4}-2 \beta^{\beta}+5\right) / \mathrm{d} t \\
\& v=4 \times 1.5^{3}-6 \times 1.5^{2}
\end{aligned}
\]
\[
v=0 \quad \mathrm{AG}
\] \& \begin{tabular}{l}
M1* \\
D*M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Differentiates displacement, one wrong term max, ignore +c \\
Substitutes \(t=1.5\) in \(\left(h_{t}\right.\) OR solves \(4 t-6 t=0\) for a + ve root \\
\(0+c\) is \(A 0\) unless \(c\) is discarded \\
Examiner's Comments \\
This question was very well done, with constant acceleration formulae almost entirely absent.
\end{tabular} \& \\
\hline \& ii
ii

ii \& \[
$$
\begin{aligned}
& a=\mathrm{d}(4 \beta-6 t) / \mathrm{d} t \\
& a(1.5)=12 \times 1.5^{2}-12 \times 1.5 \\
& a=9 \mathrm{~m} \mathrm{~s}^{-2} \quad \mathrm{AG}
\end{aligned}
$$

\] \& | M1* |
| :--- |
| D*M1 |
| A1 | \& | Differentiates velocity, one wrong term max, ignore +c |
| :--- |
| Substitutes $t=1.5$ in $a(t)$ OR solves $12 t-12 t=9$ for a + ve root |
| $9+c$ is AO unless c is discarded |
| Examiner's Comments |
| Again this was done well, with nearly all candidates demonstrating the appropriate substitution. | \&

\hline \& \& Total \& 6 \& \&

\hline 3 \& i \& \[
$$
\begin{aligned}
& V=d(0.06 t-0.45 t-0.24 t) / \mathrm{d} t \\
& V=0.18 t-0.9 t-0.24 \\
& A=\mathrm{d}(0.18 t-0.9 t-0.24) / \mathrm{d} t \\
& A=0.36 t-0.9 \\
& \text { (0) }=-0.24 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| A1 | \& | Differentiates displacement |
| :--- |
| Accept with $+c$, unsimplified coefficients |
| Differentiates velocity |
| Accept with $+c$, unsimplified coefficients |
| cao, if coeffs in $K t$ wrong AO | \&

\hline
\end{tabular}

(

				As (t) is a quadratic function, finding two values of t giving the same velocity identifies the mean of these t values as the time for the minimum velocity.	
	iii iii iii	Uses $v=0$ $0.18 t-0.9 t-0.24=0$ $t=5.25 \mathrm{~s}$	M1 A1ft	Forms and offers solution of 3 term QE using cv ((ii)) Must select +ve answer explicitly. Accept 5.3, not 5.2 Examiner's Comments Was frequently left out by candidates who had used $v=0$ in part (ii), while others simply quoted the value found previously, which (if correct) would gain full marks. A significant number of solutions foundered because candidates could not solve accurately the quadratic equation $0.18 t-0.9 t-0.24=0$. If the initial step in a solution was to convert the coefficients to integers, this was likely to yield $18 t-9 t-24=0$.	
		Total	14		
4	i	$3 \mathrm{~ms}^{-1}$	B1	Examiner's Comments All three parts of this question were well answered by nearly all candidates.	MR ($0.6 \psi^{\beta}+3$), award B1 here
	ii	$x=\int(0.6 t+3) \mathrm{d} t$ $x=0.6 p / 3+3 t(+c)$ Substitutes 1.5 in expression for x $x(1.5)=5.175 \mathrm{~m}$	M1* A1 D*M1 A1	Integrates v Accept with / without $+c$ Needs integration and 2 terms in t Only without +c. Accept 5.17, 5.18 Examiner's Comments	$\operatorname{MR}(0.6 \beta+3)$ $0.6 t^{4} / 4+3 t \quad$ is $A 0$ MR 5.26 only gets A1ft

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& This part had an answer of exactly 5.175 , which should be left as such, but the answer 5.18 was accepted. Inevitably some answers were based on suvat expressions, more commonly in (ii) where integration was needed than in (iii) which used differentiation. \&

\hline \& iii
iii

iii \& $$
a=\mathrm{d}(0.6 t+3) / \mathrm{d} t
$$

$$
6=2 \times 0.6 t
$$

\[
u(5)=18 \mathrm{~ms}^{-1}

\] \& | M1* |
| :--- |
| D*M1 |
| A1 | \& | Differentiates v |
| :--- |
| Plus attempt to solve $a(t)=6$ |
| Examiner's Comments |
| Inevitably some answers were based on suvat expressions, more commonly in (ii) where integration was needed than in (iii) which used differentiation. | \& MR $\left(0.6 \beta^{\beta}+3\right)$ gives t

= 1.82(57..)

$$
\begin{aligned}
& v(1.8257 . .)= \\
& 6.65 \quad(3 \mathrm{sf})
\end{aligned}
$$

\hline \& \& Total \& 8 \& \&

\hline 5 \& i \& $$
\begin{aligned}
& v=\int 4+12 t \mathrm{dt} \\
& v=4 t+12 t^{2} / 2(+c) \\
& (t=0, v=2) c=2 \text { and } \\
& (3)=4 \times 3+12 \times 3^{2} / 2(+2)
\end{aligned}
$$

\[
v=68 \mathrm{~m} \mathrm{~s}^{-1}

\] \& | M1* |
| :--- |
| A1 |
| D*M1 |
| A1 | \& | Integrates acceleration |
| :--- |
| Award without (+ C) |
| Evaluates constant |
| Examiner's Comments |
| The variable acceleration and hence the need to use differentiation and integration in this question was well understood with very few cases where the use of suvat equations was thought appropriate. The main cause of lost marks was failure to evaluate the constant of integration. Candidates should be aware that the constant of integration is not always zero. | \& Must see one term correct.

\hline
\end{tabular}

		$x(2.3333)-x(1)=\left(0.2 \times 2.3333^{4}-4 \times 2.3333^{3} / 3+2.8 \times 2.3333^{2}\right)-\left(0.2 \times 1^{4}-4 \times 1^{3} / 3+2.8 \times 1^{2}\right)$ Distance $=2.57 \mathrm{~m}$	M1* D*M1 A1 [6]	Evaluates x at two discarded times found from These are the $\mathrm{a}=0$ Subtraction of values (4.23-1.67) Examiner's Comments This question was well answered by most candidates, who used calculus accurately, and used their answers in (i) to complete part (ii) successfully. The commonest mistakes arose from calculator error, and in (ii) substituting $t=2.33-1=1.33$ into the formula for $x(t)$	
		Total	11		
8	i i	$\begin{aligned} & A: v=\int 0.18 t \mathrm{~d} t \\ & v=0.18 / 2 t^{2}(+\mathrm{c}) \\ & 9=0.09 t^{2} \\ & t=10 \end{aligned}$	M1* A1 D*M1 A1	Integration indicated by change in coefficient and increase in power Examiner's Comments Frequently this part of the question was answered correctly, with candidates integrating the acceleration of A.	
	ii	$B: v=\mathrm{d}\left(U t+0.08 f^{f}\right) / \mathrm{d} t$ $\begin{aligned} & v=U+0.24 f \\ & 9=U+0.24 \times 5^{2} \end{aligned}$	M1* D*M1	Differentiation indicated by change in coefficient and reduction in power	

\begin{tabular}{|c|c|c|c|c|}
\hline \& ii \& $$
\begin{aligned}
& U=3 \\
& S B(5)=3 \times 5+0.08 \times 5^{3}
\end{aligned}
$$
$$
S B(5)=25 \mathrm{~m} \quad \mathrm{AG}
$$ \& A1

A1 \& | There are instances of solutions in which $S B(5)=25$ is used to show that $U=3$, and then demonstrate that |
| :--- |
| $S B(5)=25$. Such work can gain no marks. $u=3$ without any supporting work. MOAO. |
| Examiner's Comments |
| This part of the question caused a large number of circular solutions to be presented (which gained no marks). Candidates could (and did) deduce that $U=3$ from the position of B when $t=5$. |
| The substitution of $U=3$ and $t=5$ into the distance formula of B was then held to verify the value of 25 m . That said, the correct solution based on differentiation of the distance formula of B was frequently seen. |

\hline \& \& \[
$$
\begin{aligned}
& A: x=\int 0.09 f \mathrm{~d} t \\
& x=0.09 \notin / 3 \\
& x(16)=0.03 \times 16^{3} \\
& x=122.88 \text { (may be implied by later work) } \\
& 122.88=25+10 \times 9+(9+v)(x 1) / 2 \\
& v=6.76 \mathrm{~m} \mathrm{~s}^{-1} \\
& \text { OR } \\
& 122.88-25-10 \times 9=9 \times 1+/-\mathrm{a} \times 1^{2} / 2 \\
& \text { Deceleration }=2.24 \mathrm{~m} \mathrm{~s}^{-2} \\
& v=9-2.24 \times 1 \\
& v=6.76 \mathrm{~m} \mathrm{~s} \\
& \hline-1
\end{aligned}
$$

\] \& | M1* |
| :--- |
| D*M1 |
| A1 |
| M1 |
| A1 |
| M1 |
| A1 | \& | Integration of (A) |
| :--- |
| Accept 123 $s=u t+/-a t / 2$ |
| Examiner's Comments |
| There were a lot of very good answers to this demand. Candidates |

\hline
\end{tabular}

(
(

10	a	$a=k+0.06 t$ $k+0.06(20)=1.3$ $k=1.3-1.2=0.1$	B1(AO 1.1)E M1 (AO 1.1)E A1(AO 1.1)E [3]	Use of $t=20$ and $a=1.3$ in their a Examiner's Comments Nearly all candidates correctly diffe correctly obtained the value of k as	ntiated the expression for v and 0.1.	
	b	$s=0.05 f+0.011^{\beta}(+c)$ $t=0, s=0 \Rightarrow c$ $t=20, v=14$ $s_{1}=0.05(20)^{2}+0.01(20)^{3}$ $25^{2}=14^{2}+2(1.3) s_{2}$	M1*(AO 3.1a)E A1ft(AO 1.1)E B1(AO 2.1)A B1ft(AO 1.1)E dep*M1(AO 3.4)C M1 (AO 3.3)A	Attempt to integrate - all powers increased by 1 (but not just multiplying by t) $s=\frac{1}{2} k t^{2}+0.01 t^{3}$ From a correct expression for s $12+20 k$ Finding distance travelled after 20 s (for reference $\left.s_{1}=100\right)$ Use of $V^{2}=U^{2}+$ 2as with $v=25$	If $c=0$ stated then must give a reason	

	b	$\begin{aligned} & \frac{\mathrm{d} v}{\mathrm{~d} t}=0 \Rightarrow 2 t\left(4 t^{2}-9\right)=0 \\ & t=1.5 \text { (and } t=0) \\ & \text { E.g. }\left.\frac{\mathrm{d}^{2} v}{\mathrm{~d} t^{2}}\right\|_{t=1.5}=24(1.5)^{2}-18>0 \end{aligned}$ minimum	so a	M1 (AO 3.1b) A1 (AO 1.1) B1 (AO 2.1) [3]	Substituting the correct value of k and equating to zero AG Correctly finding the given value of t Showing that this value of t gives a minimum	Or complete argument from the shape of the curve, or from first derivatives	
	c	$\begin{aligned} & S=\frac{2}{5} t^{5}-3 t^{3}-4 t(+c) \\ & -6.4125=0.4-3-4+c \Rightarrow c=\mathrm{K} \\ & s=0.4(1.5)^{5}-3(1.5)^{3}-4(1.5)+0.1875 \end{aligned}$ $s=-12.9$ so distance of P from O is 12.9 m		M1* (AO 1.1a) M1dep* (AO 2.1a) M1 (AO 1.1) A1 (AO 3.2a) [4]	Attempt to integrate $v($ all powers increased by 1) Attempt to find c Substitute 1.5 into their expression for s - dependent on both previous M marks	Constant not required for this first M mark $c=0.1875$	
		Total		10			

