1.



A small smooth pulley is suspended from a fixed point by a light chain. A light inextensible string passes over the pulley. Particles P and Q, of masses 0.3 kg and m kg respectively, are attached to the opposite ends of the string. The particles are released from rest at a height of 0.2 m above horizontal ground with the string taut; the portions of the string not in contact with the pulley are vertical (see diagram). P strikes the ground with speed 1.4 m s<sup>-1</sup>. Subsequently P remains on the ground, and Q does not reach the pulley.

- i. Calculate the acceleration of *P* while it is in motion and the corresponding tension in the string.
- ii. Find the value of *m*.
- iii. Calculate the greatest height of *Q* above the ground.
- iv. It is given that the mass of the pulley is 0.5 kg. State the magnitude of the tension in the chain which supports the pulley
  - a. when P is in motion,

b. when P is at rest on the ground and Q is moving upwards.

© OCR 2017. Page 1 of 21

[2]

[4]

[3]

[4]

[1]



A particle P of mass 0.25 kg moves upwards with constant speed u m s<sup>-1</sup> along a line of greatest slope on a smooth plane inclined at 30° to the horizontal. The pulling force acting on P has magnitude TN and acts at an angle of 20° to the line of greatest slope (see diagram). Calculate

- i. the value of T,
- ii. the magnitude of the contact force exerted on P by the plane.

The pulling force TN acting on P is suddenly removed, and P comes to instantaneous rest 0.4 s later.

iii. Calculate u.

[4]

- 3. A particle P is projected with speed u m s<sup>-1</sup> from the top of a smooth inclined plane of length 2d metres. After its projection P moves downwards along a line of greatest slope with acceleration  $4 \text{ m s}^{-2}$ . At the instant 3 s after projection P has moved half way down the plane. P reaches the foot of the plane 5 s after the instant of projection.
  - i. Form two simultaneous equations in u and d, and hence calculate the speed of projection of P and the length of the plane.
  - ii. Find the inclination of the plane to the horizontal.

iii. Given that the contact force exerted on *P* by the plane has magnitude 6 N, calculate the mass of *P*.

© OCR 2017. Page 2 of 21

[2]

[6]

[2]

[3]

[3]

4.



A particle rests on a smooth horizontal surface. Three horizontal forces of magnitudes 2.5 N, FN and 2.4 N act on the particle on bearings  $\theta$ , 180° and 270° respectively (see diagram). The particle is in equilibrium.

i. Find  $\theta$  and F.

[4]

The 2.4 N force suddenly ceases to act on the particle, which has mass 0.2 kg.

ii. Find the magnitude and direction of the acceleration of the particle.

[3]

- A particle *P* is projected down a line of greatest slope on a smooth inclined plane. *P* has velocity 5 m s<sup>-1</sup> at the instant when it has been in motion for 1.6 s and travelled a distance of 6.4 m. Calculate
  - i. the initial speed and the acceleration of P,

[5]

ii. the inclination of the plane to the vertical.

[3]

- 6. A child is trying to throw a small stone to hit a target painted on a vertical wall. The child and the wall are on horizontal ground. The child is standing a horizontal distance of 8 m from the base of the wall. The child throws the stone from a height of 1 m with speed 12 m s<sup>-1</sup> at an angle of 20° above the horizontal.
  - i. Find the direction of motion of the stone when it hits the wall.

[6]

The child now throws the stone with a speed of Vm s<sup>-1</sup> from the same initial position and still at an angle of 20° above the horizontal. This time the stone hits the target which is 2.5 m above the ground.

ii. Find V.

[6]

© OCR 2017. Page 3 of 21

In this question  $\binom{1}{0}$  and  $\binom{0}{1}$  denote unit vectors which are horizontal and vertically upwards respectively.

A particle of mass 5 kg, initially at rest at the point with position vector  $\binom{2}{45}$ m, is acted on by gravity and also by

two forces  $\binom{15}{-8}N_{\text{and}}\binom{-7}{-2}N_{\text{.}}$ 

- (a) Find the acceleration vector of the particle.
- (b) Find the position vector of the particle after 10 seconds. [3]

8.



Two particles P and Q, with masses 2 kg and 8 kg respectively, are attached to the ends of a light inextensible string. The string passes over a small smooth pulley which is fixed at a point on the intersection of two fixed inclined planes. The string lies in a vertical plane that contains a line of greatest slope of each of the two inclined planes. Plane  $\Pi_1$  is inclined at an angle of 30° to the horizontal and plane  $\Pi_2$  is inclined at an angle of  $\theta$  to the horizontal. Particle P is on  $\Pi_1$  and Q is on  $\Pi_2$  with the string taut (see diagram).

 $\Pi_2$  is smooth.

The particles are released from rest and P begins to move towards the pulley with an acceleration of  $g \cos \theta \, \mathrm{m \ s^{-2}}$ .

(a) Show that  $\theta$  satisfies the equation

$$4 \sin \theta - 5 \cos \theta = 1.$$
 [8]

[3]

[7]

(b) By expressing  $4 \sin \theta - 5 \cos \theta$  in the form  $R \sin (\theta - \alpha)$ , where R > 0 and  $0 > \alpha > 90^{\circ}$ , find, correct to 3 significant figures, the tension in the string.

© OCR 2017. Page 4 of 21



A and B are points at the upper and lower ends, respectively, of a line of greatest slope on a plane inclined at 30° to the horizontal. The distance AB is 20 m. M is a point on the plane between A and B. The surface of the plane is smooth between A and A, and rough between A and A.

[8]

[3]

A particle P is projected with speed  $4.2 \text{ms}^{-1}$  from A down the line of greatest slope (see diagram). P moves down the plane and reaches B with speed  $12.6 \text{ms}^{-1}$ . The coefficient of

friction between P and the rough part of the plane is  $\frac{\sqrt{3}}{6}$ .

- (a) Find the distance AM.
- (b) Find the angle between the contact force and the downward direction of the line of greatest slope when P is in motion between M and B.

© OCR 2017. Page 5 of 21

- A ball B is projected with speed V at an angle a above the horizontal from a point O on horizontal ground. The greatest height of B above O is H and the horizontal range of B is R. The ball is modelled as a particle moving freely under gravity.
  - (a) Show that

$$H = \frac{V^2}{2g}\sin^2\alpha,$$

(ii) 
$$R = \frac{V^2}{g} \sin 2\alpha.$$
 [3]

[5]

- (b) Hence show that  $16H 8R_0H + R^2 = 0$ , where  $R_0$  is the maximum range for the given speed of projection.
- (c) Given that  $R_0 = 200$ m and R = 192m, find (i) the two possible values of the greatest height of B, [2]
  - (ii) the corresponding values of the angle of projection. [3]
- State one limitation of the model that could affect your answers to part **(c)**. [1]

**END OF QUESTION paper** 

© OCR 2017. Page 6 of 21

## Mark scheme

| Ques | stion | Answer/Indicative content             | Marks | Part marks and guidance                                                                                                                                                                                                                                                  |
|------|-------|---------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | i     | $1.4^2 = 2 \times a \times 0.2$       | M1    | Any use of $a = g$ is M0                                                                                                                                                                                                                                                 |
|      | i     | OR .                                  |       |                                                                                                                                                                                                                                                                          |
|      | i     | 0.2 = (0 + 1.4)t/2 and $1.4 = 0 + at$ |       | $t = 2/7 \text{ hence } 1.4 = a \times 2/7$                                                                                                                                                                                                                              |
|      | i     | $a = 4.9 \text{ m s}^{-2}$            | A1    |                                                                                                                                                                                                                                                                          |
|      | i     | $0.3g - T = +/-0.3 \times 4.9$        | M1    | N2L diff of weight and tension. Any use of $a = g$ is M0                                                                                                                                                                                                                 |
|      |       |                                       |       | Examiner's Comments                                                                                                                                                                                                                                                      |
|      | i     | T= 1.47 N                             | A1    | A minority of scripts included the assertion that $u = 1.4$ , but most contained a correct calculation of acceleration. Some candidates failed to calculate the tension in the string, while others erred in confusing the signs of their terms, and found $T = 4.41$ N. |
|      | ii    | +/-4.9m = 1.47 - mg                   | M1    | N2L for $Q$ using values from (i), $a$ not $g$ , accept $a = g\Delta M/\Sigma M$                                                                                                                                                                                         |
|      | ii    | 4.9m = 1.47 - mg                      | A1ft  | Diff cv(T) and mg correct way round; ft cv(T,a)                                                                                                                                                                                                                          |
|      | ii    |                                       |       | 4.9 = g(0.3 - m)/(0.3 + m)  M1A1; ftcv(a)                                                                                                                                                                                                                                |
|      |       |                                       |       | Examiner's Comments                                                                                                                                                                                                                                                      |
|      | ii    | m = 0.1                               | A1    | Again this was answered well, though sign errors led to some wrong answers. Finding $m = 0.3$ seldom seemed to surprise a candidate.                                                                                                                                     |
|      | iii   | $1.4^2 = 2gs$                         | M1    | Accn = g                                                                                                                                                                                                                                                                 |
|      | iii   | s = 0.1                               | A1    | may be implied (eg $H=0.3$ ) BoD sign uncertainty                                                                                                                                                                                                                        |
|      | iii   | H = 0.2 + 0.2 + 0.1                   | M1    | Needs 0.2 twice                                                                                                                                                                                                                                                          |

© OCR 2017. Page 7 of 21

|   |     |                                                        | Ī            |                                                                                                                                                                                                                                                                                                                                       |
|---|-----|--------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |     |                                                        |              | Examiner's Comments                                                                                                                                                                                                                                                                                                                   |
|   | iii | H= 0.5 m                                               | A1           | In only a few scripts did candidates demonstrate the upward velocity of $Q$ at the instant when $P$ struck the ground, or assume that the deceleration of $P$ would continue to be 4.9. Fully correct work was often seen.                                                                                                            |
|   | iv  | (a) Tension = 0.5 g + 2 × 1.47                         | M1           |                                                                                                                                                                                                                                                                                                                                       |
|   |     | Tancing 7.04 N                                         | A-1          | Examiner's Comments                                                                                                                                                                                                                                                                                                                   |
|   | iv  | Tension = 7.84 N                                       | A1           | This was the first major area of difficulty for many candidates, who used particle masses rather than the tension in the string.                                                                                                                                                                                                      |
|   |     |                                                        |              | Examiner's Comments                                                                                                                                                                                                                                                                                                                   |
|   | iv  | <b>(b)</b> Tension (= 0.5 g) = 4.9 N                   | B1           | Though some candidates made this a complex situation, for many the answer was simple.                                                                                                                                                                                                                                                 |
|   |     |                                                        |              |                                                                                                                                                                                                                                                                                                                                       |
|   |     | Total                                                  | 14           |                                                                                                                                                                                                                                                                                                                                       |
| 2 | i   | Total  TCor S20 = 0.25gCor S30                         | <b>14</b> M1 | Equates cmpt T and cmpt wt / plane (doubt, see diagram and / or (ii))                                                                                                                                                                                                                                                                 |
| 2 | i   |                                                        |              | Equates cmpt T and cmpt wt / plane (doubt, see diagram and / or (ii))  1.225                                                                                                                                                                                                                                                          |
| 2 |     | 7Cor S20 = 0.25 <i>g</i> Cor S30                       | M1           |                                                                                                                                                                                                                                                                                                                                       |
| 2 |     | 7Cor S20 = 0.25 <i>g</i> Cor S30                       | M1           | 1.225                                                                                                                                                                                                                                                                                                                                 |
| 2 | i   | TCor S20 = 0.25 $g$ Cor S30 $T$ cos20 = 0.25 $g$ sin30 | M1 A1        | 1.225  Examiner's Comments  Though most scripts contained solutions based on resolving parallel to the plane, a significant minority resolved perpendicular to it, getting <i>T</i> = 6.20 as the answer. In this question, candidates having a clear diagram with forces were at a significant advantage. However, having 0.2 as the |

|   | ii  | R= 1.68 N                                                                                    | A1   | Examiner's Comments  Correct solutions were common. Some candidates who had used correct data in (i) used incorrect values in (ii). It was also quite usual for resolving perpendicular to the plane to be used again in (ii) after it had been (wrongly) used in (i). |
|---|-----|----------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | iii | (m)accn = +/- (m)9.8sin30                                                                    | M1*  | N2L with single force a cmpt wt (accept cos)                                                                                                                                                                                                                           |
|   | iii | <i>a</i> = +/-4.9                                                                            | A1   |                                                                                                                                                                                                                                                                        |
|   | iii | $u = +/-9.8\sin 30 \times 0.4$                                                               | D*M1 |                                                                                                                                                                                                                                                                        |
|   | iii | <i>u</i> = 1.96                                                                              | A1   | Must be +ve (accept loss of – sign)  Examiner's Comments  Candidates who made errors in (i) or (ii) were able to gain full marks here, and most did. In this simple context candidates were able to avoid gross sign errors.                                           |
|   |     | Total                                                                                        | 10   |                                                                                                                                                                                                                                                                        |
| 3 | i   | $d = 3u + 4 \times 3^2/2 \ (= 3u + 18)$                                                      | B1   |                                                                                                                                                                                                                                                                        |
|   | i   | $2d = 5u + 4 \times 5^2/2 = 5u + 50$                                                         | B1   | $OR \ d = (5 - 3)(u + 3 \times 4) + 4 \times 2^2/2$ for lower half of slope $(d = 2u + 32)$                                                                                                                                                                            |
|   | i   | 6u + 36 = 5u + 50                                                                            | M1   | Attempts to solve 2 SE in <i>u</i> and <i>d</i> , at least one with 3 terms.  Tolerate <i>u</i> , <i>d</i> switch to <i>x</i> , <i>y</i> for solving reasons                                                                                                           |
|   | i   | $u = 14 \text{ ms}^{-1}$                                                                     | A1   |                                                                                                                                                                                                                                                                        |
|   | i   | $2d = 5 \times 14 + 4 \times 5^{2}/2$<br>$OR d = 3 \times 14 + 18 \ OR d = 2 \times 14 + 32$ | M1   | Substitutes in 3 term eqn, starts <i>suvat</i> again, or solves SEs again.  If <i>u</i> is negative, allow substitution of +ve equivalent.                                                                                                                             |
|   | i   | Length = 120 m                                                                               | A1   |                                                                                                                                                                                                                                                                        |
|   | i   |                                                                                              |      | Candidates who use s or x instead of d can be given marks BoD  M1 for getting to a single equation with one unknown having used two                                                                                                                                    |

|     |                         |    | different equations.  Candidates who find $2d = 120$ from their SE and then give a final answer $d = 60$ get A0.  Candidates who find $2d = 120$ from their SE and then give no further work get A1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|-------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ii  | $4(m) = (m)g\sin\theta$ | M1 | Mass may be omitted on both sides. Allow $4(m) = (m)g \cos \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ii  | <i>θ</i> = 24.1°        | A1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ii  |                         |    | Value for mass assumed or wrong, allow M1A0 fortuitous.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| iii | $6 = mg\cos 24.1$       | M1 | Or 6 = $mg$ sin 24.1, uses numerical answer referring to (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                         |    | www                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                         |    | Examiner's Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| iii | m = 0.671  kg           | A1 | 5(i) was well attempted by nearly all, with many correct solutions seen. However, it was common for candidates to lose the last mark by giving a value for d'but not giving the length of the plane.  5(ii) and 5(iii) were often omitted, and only the best candidates knew how to answer each part. In 5(iii) a version of Newton's Second Law (4m = 6) was sometimes offered as the solution.  In nearly all cases when (iii) was correctly answered, candidates used their answer to part (ii). However, a few chose a different route, namely (mg)² = (4m)² + 6². The unfamiliar way in which this topic (component of force perpendicular to an inclined plane) was tested led to a rash of unexpected errors. The two most frequent were resolving 6, rather than the weight, and using sine function, rather than cosine.  Candidates who use cos in (ii) and sin in (iii) will fortuitously get the |
| iii |                         |    | correct mass. However (iii) is given M1A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | Total                   | 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

© OCR 2017. Page 10 of 21

|   |    |                                                                   |    |                                                                                                                                                                                                                                                                     | T T                                    |
|---|----|-------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 4 | i  | $2.5\sin\theta = 2.4$                                             | M1 | $2.5$ CorS $\theta$ = $2.4$                                                                                                                                                                                                                                         | $2.5\cos\theta = 2.4 \text{ M1 hence}$ |
|   | i  | $\theta$ = 73.7                                                   | A1 | Accept 74                                                                                                                                                                                                                                                           | <i>θ</i> = 16.3 A0                     |
|   | i  | $2.5\cos\theta = F$                                               | M1 | $F = 2.5 \operatorname{SorC} \theta$ , opposite to that above                                                                                                                                                                                                       | $2.5\sin\theta = F$ M1 hence           |
|   | i  | F= 0.7                                                            | A1 | Exact, but allow 0.702 (3 sf) $\theta = 73.7$                                                                                                                                                                                                                       | F= 0.7(00) A1 SC                       |
|   | i  | OR .                                                              |    |                                                                                                                                                                                                                                                                     |                                        |
|   | i  | $2.4^2 + \vec{F}^2 = 2.5^2 \text{ or } \vec{F}^2 = 2.5^2 - 2.4^2$ | M1 |                                                                                                                                                                                                                                                                     |                                        |
|   |    |                                                                   |    | Examiner's Comments                                                                                                                                                                                                                                                 |                                        |
|   |    |                                                                   |    | Learning 3 Comments                                                                                                                                                                                                                                                 |                                        |
|   | i  | F= 0.7                                                            | A1 | The familiarity of the material gave rise to many correct answers. One error was using the value of 2.5cos73.7 as F. This gives 0.702 as the answer which is wrong correct to 3 significant figures; however there was no penalty for the mistake on this occasion. | F can then be used to find $	heta$     |
|   | ii | 2.4 = 0.2a                                                        | M1 | N2L, Any horizontal force other than <i>F</i> , 0.7, 2.5 (Do not treat removing / using 2.5 as a MR)                                                                                                                                                                | Including g, automatically M0          |
|   | ii | $a = 12 \text{ ms}^{-2}$                                          | A1 | 12.0 from 2.5sin73.7 /0.2                                                                                                                                                                                                                                           |                                        |
|   | ii | Bearing (0)90° OR                                                 |    |                                                                                                                                                                                                                                                                     | Horizontal is B0 (ambiguous)           |
|   |    |                                                                   |    | Angle value other than exactly 90° or 0° B0                                                                                                                                                                                                                         |                                        |
|   |    |                                                                   |    | Allow B1 for force dirn, if acon not found                                                                                                                                                                                                                          |                                        |
|   |    |                                                                   |    | Allow Di for force diffi, il accirriot found                                                                                                                                                                                                                        |                                        |
|   |    |                                                                   |    | Examiner's Comments                                                                                                                                                                                                                                                 |                                        |
|   | ii | "To right"," opposite old 2.4 N force" etc                        | B1 | Was unfamiliar, and in consequence badly answered. There was little                                                                                                                                                                                                 |                                        |
|   |    |                                                                   |    | understanding that removal of the 2.4 N force from a system in                                                                                                                                                                                                      |                                        |
|   |    |                                                                   |    | equilibrium must create a resultant force of equal magnitude with the                                                                                                                                                                                               |                                        |
|   |    |                                                                   |    | opposite sense. Indeed, calculations often ended when the resultant of                                                                                                                                                                                              |                                        |
|   |    |                                                                   |    | the two remaining forces had been found                                                                                                                                                                                                                             |                                        |
|   |    |                                                                   |    |                                                                                                                                                                                                                                                                     |                                        |
|   |    | Total                                                             | 7  |                                                                                                                                                                                                                                                                     |                                        |

| 5 | i  |                                                            | M1  | Uses $s = (u + v)t/2$ or a combination of two other formulae                                                                                                                |
|---|----|------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | i  | $6.4 = (u+5)/2 \times 1.6$                                 | A1  | $5^2 = u^2 + 2 \times 6.4a$ M1                                                                                                                                              |
|   | i  | $u = 3 \text{ m s}^{-1}$                                   | A1  | 5 = u + 1.6a M1<br>Accurate equation in one variable A1                                                                                                                     |
|   | i  | 5 = 3 + 1.6 <i>a</i>                                       | M1  | $u = 3 \text{ m s}^{-1}$ A1                                                                                                                                                 |
|   | i  | $a = 1.25 \text{ m s}^{-2}$ <i>OR</i>                      | A1  | a = 1.25 m s <sup>-2</sup> A1 Candidates may find a first (see below)                                                                                                       |
|   | i  | $6.4 = 5 \times 1.6 - a1.6^2/2$                            | M1  | $s = vt + /- at^{\varrho}/2$                                                                                                                                                |
|   | i  | $a = 1.25 \text{ m s}^{-2}$                                | A1  | Must be from $s = vt - at^2/2$                                                                                                                                              |
|   | i  |                                                            | M1  |                                                                                                                                                                             |
|   | i  | $5 = u + 1.25 \times 1.6$                                  | A1  |                                                                                                                                                                             |
|   | i  | $u = 3 \text{ m s}^{-1}$                                   | A1  | <b>SC</b> Do not accept $a = 1.25$ from $6.4 = 5 \times 1.6 + a1.6^2/2$ but allow subsequent use of $a = 1.25$ in $5 = u + 1.25 \times 1.6$ <b>Examiner's Comments</b>      |
|   |    |                                                            |     | Most candidates scored full marks. Usually appropriate <i>suvat</i> equations were selected, though a minority of candidates solved (correctly) two simultaneous equations. |
|   | ii | $1.25(m) = (m)gCorS\theta$                                 | M1  | Resolves $g$ or weight, $a \neq g$                                                                                                                                          |
|   | ii | $1.25(m) = (m)g\cos\theta \ OR \ 1.25(m) = (m)g\sin\theta$ | A1√ | ft cv(1.25) from (i)                                                                                                                                                        |
|   |    |                                                            |     | Must be angle with vertical                                                                                                                                                 |
|   | ii | Angle with vertical = 82.7°                                | A1  | Examiner's Comments                                                                                                                                                         |
|   |    |                                                            |     | By far the most common approach error was to give the angle with the                                                                                                        |

|   |    |                                      |         | horizontal, so 2/3 was the most frequent score. A significant minority of candidates did not link the acceleration in (i) to the inclination in (ii).                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---|----|--------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |    | Total                                | 8       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6 | i  | $v_x = 12\cos 20$                    | *B1     | 11.27631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | i  | $8 = 12t\cos 20$                     | B1      | Using suvat to find expression in $t$ only. ( $t = 0.70945$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | i  |                                      | *M1     | Attempt at use of $v = u + at$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | i  | $v_y = 12\sin 20 - gcv(t)$           | A1      | -2.84838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | i  | $\tan\theta = v_y / v_x$             | Dep**M1 | Use trig to find a relevant angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |    |                                      |         | 14.1763 (75.8° downward vertical)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |    |                                      |         | Examiner's Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | i  | 14.2° below horizontal               | A1      | Many good solutions were seen to this question. Although candidates are getting better at describing the direction relative to a fixed direction, there is still room for improvement. A simple 'below the horizontal' accompanying the angle would have been sufficient. A few candidates lost marks because they were unable to rearrange $8 = 12 t \cos 20$ correctly to obtain the value of $t$ . A more common error was to use $v^2 = u^2 + 2as$ instead of $v = u + at$ to find the vertical component of velocity without justifying the sign taken when square rooting to find $v$ . |
|   | ii | 8 = <i>Vt</i> cos20                  | B1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | ii |                                      | *M1     | Attempt at use of $s = ut + \frac{1}{2} at^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | ii | $1.5 = Vt \sin 20 - gt^2/2$          | A1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | ii | Eliminate <i>t</i>                   | dep*M1  | OR Eliminate $V$ and solve for $t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | ii | Attempt to solve a quadratic for $V$ | dep*M1  | AND Sub value for <i>t</i> and solve for <i>V</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | ii | <i>V</i> = 15.9                      | A1      | V= 15.8606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|   | ii | OR $y = x \tan \theta - gx^{2} \sec^{2} \theta / 2 u^{2}$                                                                                                                                                                                                                                                                     | *B1                                                       | Use equation of trajectory                                                                                                                                                                                                                                                                  |  |
|---|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   | ii | Substitute values for $y$ , $x$ , $\theta$                                                                                                                                                                                                                                                                                    | dep*M1                                                    |                                                                                                                                                                                                                                                                                             |  |
|   | ii | $1.5 = 8 \tan 20 - g 8^2 \sec^2 20/2 V^2$                                                                                                                                                                                                                                                                                     | A1                                                        |                                                                                                                                                                                                                                                                                             |  |
|   | ii | Attempt to solve a quadratic for V                                                                                                                                                                                                                                                                                            | dep*M2                                                    | SC M1 for solving for $V^2$                                                                                                                                                                                                                                                                 |  |
|   |    |                                                                                                                                                                                                                                                                                                                               |                                                           | V= 15.8606                                                                                                                                                                                                                                                                                  |  |
|   | ii | V= 15.9                                                                                                                                                                                                                                                                                                                       | A1                                                        | Examiner's Comments  This was well done in terms of the candidates knowing what was required, but in some cases the algebra wasn't always equal to the task. A small minority of candidates made the unfortunate assumption that the target was hit at the highest point of the trajectory. |  |
|   |    | Total                                                                                                                                                                                                                                                                                                                         | 12                                                        |                                                                                                                                                                                                                                                                                             |  |
| 7 | e  | $\mathbf{g} = \begin{pmatrix} 0 \\ -9.8 \end{pmatrix}$ $\begin{pmatrix} 15 \\ -8 \end{pmatrix} + \begin{pmatrix} -7 \\ -2 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ -9.8 \end{pmatrix} = 5\mathbf{a}$ $\mathbf{a} = \begin{pmatrix} 1.6 \\ -11.8 \end{pmatrix}_{\text{or}} \begin{pmatrix} 1.6 \\ -\mathbf{g} - 2 \end{pmatrix}$ | B1(AO<br>1.2)E<br>M1(AO<br>3.3)E<br>A1(AO<br>3.4)C<br>[3] | Use of F = ma with correct m and two terms of F correct  Examiner's Comments  A significant number of candidates either forgot to include a gravity term or wrote                                                                                                                           |  |

© OCR 2017. Page 14 of 21

|   | b | $\mathbf{s} = \frac{1}{2} \begin{pmatrix} 1.6 \\ -11.8 \end{pmatrix} (10)^2$ $\mathbf{s} = \begin{pmatrix} 80 \\ -590 \end{pmatrix}$ Position vector is $\begin{pmatrix} 82 \\ -545 \end{pmatrix}$ | M1(AO<br>3.4)E<br>A1ft(AO<br>1.1)E<br>A1(AO<br>1.1)C | that $\binom{15}{-8} + \binom{-7}{-2} + 5 \binom{0}{-9.8} = 5\mathbf{a}$ therefore forgetting to multiply the gravity term by the mass of the particle.  Use of $\mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ with $t = 10$ so a solution $t = 10$ so $t = 10$ s |
|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |   | Total                                                                                                                                                                                              | 6                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8 | а | $R_1 = 2g\cos 30$                                                                                                                                                                                  | B1<br>(AO1.1)                                        | Resolve perpendicular to $\Pi_1$ where $\Pi_2$ is the normal contact force on $\Pi_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

© OCR 2017.

Page 15 of 21

|   | $F = \frac{\sqrt{3}}{3} \times g\sqrt{3}$ $T - F - 2g \sin 30 = 2(g \cos \theta)$ $8g \sin \theta - T = 8(g \cos \theta)$ $8g \sin \theta - T = g - 2g \sin 30 = 10g \cos \theta$ $8\sin \theta - 1 - 1 = 10 \cos \theta \Rightarrow 4 \sin \theta = 1$ | (AO3.3)<br>M1<br>(AO3.3)<br>A1<br>(AO1.1)<br>M1<br>(AO3.3)<br>A1<br>(AO3.4) | Use of $F = \mu R$ Applying N II parallel to the plane for $P$ Allow with $a$ Applying N II parallel to the plane for $Q$ Allow with $a$ Combining simultaneous equations to eliminate $T$ (dependent on all previous M marks)  AG | F = g  The M marks for N II parallel to a plane require the correct number of terms and the weight resolved; allow sign errors and sin/cos confusion |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| b | $R = \sqrt{41}$ $R\cos a = 4, R\sin a = 5$ $\tan \alpha = \frac{5}{4} \Rightarrow \alpha = 51.3$                                                                                                                                                        | B1<br>(AO1.1)<br>M1<br>(AO1.1)<br>A1<br>(AO1.1)<br>M1<br>(AO1.1)            | Forming two equations in $R$ and $a$ (allow sign errors or sin/cos confusion)                                                                                                                                                      | 6.403124  This mark is implied if correct <i>α</i> seen  51.340191 <i>θ</i> – 51.34 =                                                                |  |

© OCR 2017. Page 16 of 21

|   |   | $\theta - \alpha = \sin^{-1}\left(\frac{1}{R}\right)$ $\theta = 60.3$ $T = 8g \sin 60.3 - 8g \cos 60.3$                                                                       | A1<br>(AO1.1)<br>M1<br>(AO3.4)<br>A1<br>(AO2.2a)                                        | Correct method for finding $\theta$ If $\theta$ is obtained by calculator with none of the above marks earned, allow SC <b>B2</b> for 60.3 or better  Using their $\theta$ to                                   | 8.9848<br>60.325068                                                                                                                             |  |
|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   |   | T= 29.3N                                                                                                                                                                      | [7]                                                                                     | evaluate T                                                                                                                                                                                                      | 29.303539                                                                                                                                       |  |
|   |   | Total                                                                                                                                                                         | 15                                                                                      |                                                                                                                                                                                                                 |                                                                                                                                                 |  |
| 9 | а | Acceleration component = $g \sin 30^\circ$ $v_M^2 = 4.2^2 + 2(g \sin 30^\circ)x$ $R = mg \cos 30^\circ$ $F = \frac{\sqrt{3}}{6} mg \cos 30^\circ$ $mg \sin 30^\circ - F = ma$ | B1 (AO<br>1.2)<br>M1 (AO<br>3.3)<br>B1 (AO<br>3.3)<br>M1 (AO<br>3.4)<br>M1* (AO<br>3.3) | Correct acceleration component seen  Use of $v^2 = u^2 + 2as$ for the motion from $A$ to $M$ Resolving perpendicular to the plane  Use of $F = \mu R$ for the motion of $P$ between $M$ and $B$ Use of Newton's | $x$ is the distance $AM$ and $v_M$ is the speed of $P$ at $M$ $R$ is the normal contact force between $P$ and the plane, $m$ is the mass of $P$ |  |

© OCR 2017.

Page 17 of 21

|   | $12.6^{2} = v_{M}^{2} + 2g\left(\sin 30^{\circ} - \frac{\sqrt{3}}{6}\cos 30^{\circ}\right)(20 - x)$ $12.6^{2} = 4.2^{2} + 2(g\sin 30^{\circ})x$ $+ 2g(20 - x)\left(\sin 30^{\circ} - \frac{\sqrt{3}}{6}\cos 30^{\circ}\right)$ $x = 8.8 \text{ so the distance } AM \text{ is } 8.8 \text{ m}$ | M1dep* (AO 3.4)  M1 (AO 2.1)  A1 (AO 2.2a)               | 2nd Law for the motion of $P$ between $M$ and $B$ Correct use of $v^2 = u^2 + 2as$ for the motion from $M$ to $B$ with their $a$ and correct $s$ Substitute their expression for $v_M$ to obtain an equation in $x$ only |             |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
|   |                                                                                                                                                                                                                                                                                                | [8]                                                      | BC                                                                                                                                                                                                                       |             |  |
| b | $\tan \alpha = \frac{R}{F} = \frac{mg \cos 30^{\circ}}{\frac{\sqrt{3}}{6} mg \cos 30^{\circ}}$ $\frac{\log 18^{\circ} - a}{\log 18^{\circ}}$                                                                                                                                                   | M1* (AO<br>3.1b)<br>M1dep*<br>(AO 1.1)<br>M1 (AO<br>1.1) | Equates ratio of contact forces to tan  Correct answer (to                                                                                                                                                               |             |  |
|   | = 106.1°                                                                                                                                                                                                                                                                                       | [3]                                                      | at least 3 sf)                                                                                                                                                                                                           | 106.102 113 |  |

| 10 | а | (i) | $H = \frac{1}{2g} \sin^2 \alpha$ $R = (V \cos \alpha)t \text{ and } 0 = (V \sin \alpha)t + \frac{1}{2}(-g)t^2$ | M1 (AO 3.3)  A1 (AO 1.1)  [2]  M1* (AO 3.3)  M1dep* (AO 1.1)  A1 (AO 2.2a) | Use of $v^2 = u^2 + 2as$ vertically  AG – sufficient working must be shown  Use of $s = ut + \frac{1}{2}at^2$ horizontally and vertically  Re-arranging and eliminating $t$ AG – sufficient working must be shown | Alternatively: Finding $t$ from $0 = V$ $\sin \alpha - gt$ and using double the value, oe |  |
|----|---|-----|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
|    | Ь |     | $c_0 = \frac{V^2}{g}$ $c_0 = \frac{V^2}{g}$ $c_0 = \frac{V^2 - 2gH}{V^2}$ $c_0 = \frac{V^2 - 2gH}{V^2}$        | B1 (AO<br>3.3)<br>M1* (AO<br>3.1a)<br>M1dep*<br>(AO 2.1)                   | Correct expression for maximum range  Obtain expressions for $\sin^2 a$ and $\cos 2$ $a$ using $\sin^2 t + \cos 2 1 \equiv t$ Eliminate $a$                                                                       |                                                                                           |  |

|   | $R = \frac{2V^2}{g} \times \frac{\sqrt{2gH}}{V} \times \frac{\sqrt{V^2 - 2gH}}{V}$ $R = \frac{2}{g} \sqrt{2gH} \sqrt{R_0 g - 2gH}$ $\Rightarrow R^2 = \frac{4}{g^2} (2gH)(R_0 g - 2gH)$ $\Rightarrow 16H^2 - 8R_0H + R^2 = 0$ | Eliminate Vusing maximum range and remove square roots – dependent on both previous M marks  A1 (A0 2.2a)  AG – sufficient working must be shown                                                  |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| С | (i) $H = 64 \text{m or } 36 \text{m}$ $\sin 2\alpha = \frac{192}{200}$ (ii) $\alpha = 36.9^{\circ}$ $\alpha = 53.1^{\circ}$                                                                                                   | M1 (AO 1.1)  A1 (AO 1.1)  [2]  M1 (AO 1.1)  [2]  M1 (AO 1.1)  Use given values to obtain a quadratic in H BC  Use given values to obtain a trigonometric equation in $\alpha$ 0.644 rad 0.927 rad |  |

|   | The model has not considered the possibility of:                                                                                | B1 (AO<br>3.5b) |                                       |  |
|---|---------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------|--|
| d | <ul> <li>Air resistance</li> <li>The ball would have dimensions</li> <li>Wind</li> <li>The possible spin of the ball</li> </ul> |                 | Any one correct limitation identified |  |
|   |                                                                                                                                 | [1]             |                                       |  |
|   | Total                                                                                                                           |                 |                                       |  |

© OCR 2017. Page 21 of 21