

A small smooth pulley is suspended from a fixed point by a light chain. A light inextensible string passes over the pulley. Particles $P$ and $Q$, of masses 0.3 kg and $m \mathrm{~kg}$ respectively, are attached to the opposite ends of the string. The particles are released from rest at a height of 0.2 m above horizontal ground with the string taut; the portions of the string not in contact with the pulley are vertical (see diagram). Pstrikes the ground with speed $1.4 \mathrm{~m} \mathrm{~s}^{-1}$. Subsequently Premains on the ground, and $Q$ does not reach the pulley.
i. Calculate the acceleration of $P$ while it is in motion and the corresponding tension in the string.
ii. Find the value of $m$.
iii. Calculate the greatest height of $Q$ above the ground.
iv. It is given that the mass of the pulley is 0.5 kg . State the magnitude of the tension in the chain which supports the pulley
a. when $P$ is in motion,
b. when $P$ is at rest on the ground and $Q$ is moving upwards.
2.


A particle $P$ of mass 0.25 kg moves upwards with constant speed $u \mathrm{~m} \mathrm{~s}^{-1}$ along a line of greatest slope on a smooth plane inclined at $30^{\circ}$ to the horizontal. The pulling force acting on $P$ has magnitude $T \mathrm{~N}$ and acts at an angle of $20^{\circ}$ to the line of greatest slope (see diagram). Calculate
i. the value of $T$,
ii. the magnitude of the contact force exerted on $P$ by the plane.

The pulling force $T \mathrm{~N}$ acting on $P$ is suddenly removed, and $P$ comes to instantaneous rest 0.4 s later.
iii. Calculate $u$.
3. A particle $P$ is projected with speed $u \mathrm{~m} \mathrm{~s}^{-1}$ from the top of a smooth inclined plane of length 2dmetres. After its projection Pmoves downwards along a line of greatest slope with acceleration $4 \mathrm{~m} \mathrm{~s}^{-2}$. At the instant 3 s after projection $P$ has moved half way down the plane. Preaches the foot of the plane 5 s after the instant of projection.
i. Form two simultaneous equations in $u$ and $d$, and hence calculate the speed of projection of $P$ and the length of the plane.
ii. Find the inclination of the plane to the horizontal.
iii. Given that the contact force exerted on $P$ by the plane has magnitude 6 N , calculate the mass of $P$.
4.


A particle rests on a smooth horizontal surface. Three horizontal forces of magnitudes $2.5 \mathrm{~N}, F \mathrm{~N}$ and 2.4 N act on the particle on bearings $\theta^{\circ}, 180^{\circ}$ and $270^{\circ}$ respectively (see diagram). The particle is in equilibrium.
i. Find $\theta$ and $F$.

The 2.4 N force suddenly ceases to act on the particle, which has mass 0.2 kg .
ii. Find the magnitude and direction of the acceleration of the particle.
5. A particle $P$ is projected down a line of greatest slope on a smooth inclined plane. $P$ has velocity $5 \mathrm{~m} \mathrm{~s}^{-1}$ at the instant when it has been in motion for 1.6 s and travelled a distance of 6.4 m . Calculate
i. the initial speed and the acceleration of $P$,
ii. the inclination of the plane to the vertical.
6. A child is trying to throw a small stone to hit a target painted on a vertical wall. The child and the wall are on horizontal ground. The child is standing a horizontal distance of 8 m from the base of the wall. The child throws the stone from a height of 1 m with speed $12 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of $20^{\circ}$ above the horizontal.
i. Find the direction of motion of the stone when it hits the wall.

The child now throws the stone with a speed of $V \mathrm{~m} \mathrm{~s}^{-1}$ from the same initial position and still at an angle of $20^{\circ}$ above the horizontal. This time the stone hits the target which is 2.5 m above the ground.
ii. Find $V$.

In this question $\binom{1}{0}_{\text {and }}\binom{0}{1}_{\text {denote }}$ unit vectors which are horizontal and vertically upwards respectively.

A particle of mass 5 kg , initially at rest at the point with position vector $\binom{2}{45} \mathrm{~m}$, is acted on by gravity and also by
two forces $\binom{15}{-8} \mathrm{~N}$ and $\binom{-7}{-2} \mathrm{~N}$.
(a) Find the acceleration vector of the particle.
(b) Find the position vector of the particle after 10 seconds.
8.


Two particles $P$ and $Q$, with masses 2 kg and 8 kg respectively, are attached to the ends of a light inextensible string. The string passes over a small smooth pulley which is fixed at a point on the intersection of two fixed inclined planes. The string lies in a vertical plane that contains a line of greatest slope of each of the two inclined planes. Plane $\Pi_{1}$ is inclined at an angle of $30^{\circ}$ to the horizontal and plane $\Pi_{2}$ is inclined at an angle of $\theta$ to the horizontal. Particle $P$ is on $\Pi_{1}$ and $Q$ is on $\Gamma_{2}$ with the string taut (see diagram).
$\Pi_{1}$ is rough and the coefficient of friction between $P$ and $\Pi_{1}$ is $\frac{\sqrt{3}}{3}$.
$\Gamma_{2}$ is smooth.
The particles are released from rest and $P$ begins to move towards the pulley with an acceleration of
$g \cos \theta \mathrm{~m} \mathrm{~s}^{-2}$.
(a) Show that $\theta$ satisfies the equation

$$
4 \sin \theta-5 \cos \theta=1
$$

(b) By expressing $4 \sin \theta-5 \cos \theta$ in the form $R \sin (\theta-a)$, where $R>0$ and $0>a>90^{\circ}$, find, correct to 3 significant figures, the tension in the string.
9.

$A$ and $B$ are points at the upper and lower ends, respectively, of a line of greatest slope on a plane inclined at $30^{\circ}$ to the horizontal. The distance $A B$ is 20 m . $M$ is a point on the plane between $A$ and $B$. The surface of the plane is smooth between $A$ and $M$, and rough between $M$ and $B$.

A particle $P$ is projected with speed $4.2 \mathrm{~ms}^{-1}$ from $A$ down the line of greatest slope (see diagram). Pmoves down the plane and reaches $B$ with speed $12.6 \mathrm{~ms}^{-1}$. The coefficient of friction between $P$ and the rough part of the plane is $\frac{\sqrt{3}}{6}$.
(a) Find the distance $A M$.
(b) Find the angle between the contact force and the downward direction of the line of greatest slope when $P$ is in motion between $M$ and $B$.
10. A ball $B$ is projected with speed $V$ at an angle $a$ above the horizontal from a point $O$ on horizontal ground. The greatest height of $B$ above $O$ is $H$ and the horizontal range of $B$ is $R$. The ball is modelled as a particle moving freely under gravity.
(a) Show that

$$
\begin{align*}
& \text { (i) } \quad H=\frac{V^{2}}{2 g} \sin ^{2} \alpha  \tag{2}\\
& \text { (ii) } \quad R=\frac{V^{2}}{g} \sin 2 \alpha
\end{align*}
$$

(b) Hence show that $16 H^{P}-8 R_{0} H+R^{2}=0$, where $R_{0}$ is the maximum range for the given speed of projection.
(c) Given that $R_{0}=200 \mathrm{~m}$ and $R=192 \mathrm{~m}$, find
(i) the two possible values of the greatest height of $B$,
(ii) the corresponding values of the angle of projection.

State one limitation of the model that could affect your answers to part (c).
(d)

## Mark scheme

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Answer/Indicative content \& Marks \& Part marks and guidance \& \\
\hline 1 \& i \& \[
\begin{aligned}
\& 1.4^{2}=2 \times a \times 0.2 \\
\& \text { OR } \\
\& 0.2=(0+1.4) t / 2 \text { and } 1.4=0+a t \\
\& a=4.9 \mathrm{~m} \mathrm{~s}^{-2} \\
\& 0.3 g-T=+/-0.3 \times 4.9 \\
\& T=1.47 \mathrm{~N}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Any use of \(a=g\) is MO \\
\(t=2 / 7\) hence \(1.4=a \times 2 / 7\) \\
N2L diff of weight and tension. Any use of \(a=g\) is MO \\
Examiner's Comments \\
A minority of scripts included the assertion that \(u=1.4\), but most contained a correct calculation of acceleration. Some candidates failed to calculate the tension in the string, while others erred in confusing the signs of their terms, and found \(T=4.41 \mathrm{~N}\).
\end{tabular} \&  \\
\hline \& ii
ii
ii

ii \& $$
+/-4.9 m=1.47-m g
$$

$$
4.9 m=1.47-m g
$$

\[
m=0.1

\] \& | M1 |
| :--- |
| A1ft |
| A1 | \& | N2L for $Q$ using values from (i), a not $g$, accept $a=g \Delta \mathrm{M} / \Sigma \mathrm{M}$ |
| :--- |
| Diff $\operatorname{cv}(\mathrm{T})$ and mg correct way round; $\mathrm{ft} \operatorname{cv}(T, a)$ $4.9=g(0.3-m) /(0.3+m) \mathrm{M} 1 \mathrm{~A} 1 ; \operatorname{ftcv}(a)$ |
| Examiner's Comments |
| Again this was answered well, though sign errors led to some wrong answers. Finding $m=0.3$ seldom seemed to surprise a candidate. | \& <br>

\hline \& iii \& \[
$$
\begin{aligned}
& 1.4^{2}=2 g s \\
& s=0.1 \\
& H=0.2+0.2+0.1
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| M1 | \& | Accn $=g$ |
| :--- |
| may be implied (eg $H=0.3$ ) BoD sign uncertainty |
| Needs 0.2 twice | \& <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& Iii \& \(H=0.5 \mathrm{~m}\) \& A1 \& \begin{tabular}{l}
Examiner's Comments \\
In only a few scripts did candidates demonstrate the upward velocity of \(Q\) at the instant when \(P\) struck the ground, or assume that the deceleration of \(P\) would continue to be 4.9. Fully correct work was often seen.
\end{tabular} \& \\
\hline \& iv \& \begin{tabular}{l}
(a) Tension \(=0.5 g+2 \times 1.47\) \\
Tension \(=7.84 \mathrm{~N}\) \\
(b) Tension (= 0.5 g\()=4.9 \mathrm{~N}\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
B1
\end{tabular} \& \begin{tabular}{l}
Examiner's Comments \\
This was the first major area of difficulty for many candidates, who used particle masses rather than the tension in the string. \\
Examiner's Comments \\
Though some candidates made this a complex situation, for many the answer was simple.
\end{tabular} \& \\
\hline \& \& Total \& 14 \& \& \\
\hline 2 \& i \& TCor S20 = 0.25gCor S30
\[
T \cos 20=0.25 g \sin 30
\]
\[
T=1.3(0)
\] \& M1
A1

A1 \& | Equates cmpt T and cmpt wt / plane (doubt, see diagram and / or (ii)) |
| :--- |
| 1.225 |
| Examiner's Comments |
| Though most scripts contained solutions based on resolving parallel to the plane, a significant minority resolved perpendicular to it, getting $T=$ 6.20 as the answer. In this question, candidates having a clear diagram with forces were at a significant advantage. However, having 0.2 as the mass, or $T$ cos30 as the component of $T$, were common misreads. | \& <br>

\hline \& ii \& \[
$$
\begin{aligned}
& R+/- \text { TCorS2O }=+/-0.25 g \text { CorS30 } \\
& R+1.3 \sin 20=0.25 g \cos 30
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 ft | \& Resolves perp plane, accept letter $T$

$$
\mathrm{ft}(\mathrm{cv}(T))
$$ \& <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \& ii \& \(R=1.68 \mathrm{~N}\) \& A1 \& \begin{tabular}{l}
Examiner's Comments \\
Correct solutions were common. Some candidates who had used correct data in (i) used incorrect values in (ii). It was also quite usual for resolving perpendicular to the plane to be used again in (ii) after it had been (wrongly) used in (i).
\end{tabular} \\
\hline \& iii
iii
iii

ii

iii \& $$
\begin{aligned}
& (m) \operatorname{accn}=+/-(m) 9.8 \sin 30 \\
& a=+/-4.9 \\
& u=+/-9.8 \sin 30 \times 0.4
\end{aligned}
$$

\[
u=1.96

\] \& | M1* |
| :--- |
| A1 |
| D*M1 |
| A1 | \& | N2L with single force a cmpt wt (accept cos) |
| :--- |
| Must be +ve (accept loss of - sign) |
| Examiner's Comments |
| Candidates who made errors in (i) or (ii) were able to gain full marks here, and most did. In this simple context candidates were able to avoid gross sign errors. | <br>

\hline \& \& Total \& 10 \& <br>
\hline 3 \& i
i
i
i
i
i

i \& \[
$$
\begin{aligned}
& d=3 u+4 \times 3^{2} / 2(=3 u+18) \\
& 2 d=5 u+4 \times 5^{2} / 2(=5 u+50) \\
& 6 u+36=5 u+50 \\
& u=14 \mathrm{~ms}^{-1} \\
& 2 d=5 \times 14+4 \times 5^{2} / 2 \\
& \text { OR } d=3 \times 14+18 \text { OR } d=2 \times 14+32 \\
& \text { Length }=120 \mathrm{~m}
\end{aligned}
$$

\] \& | B1 |
| :--- |
| B1 |
| M1 |
| A1 |
| M1 |
| A1 | \& | OR $d=(5-3)(u+3 \times 4)+4 \times 2^{2} / 2$ for lower half of slope $(d=2 u+32)$ |
| :--- |
| Attempts to solve 2 SE in $u$ and $d$, at least one with 3 terms. |
| Tolerate $u, d$ switch to $x, y$ for solving reasons |
| Substitutes in 3 term eqn, starts suvat again, or solves SEs again. |
| If $u$ is negative, allow substitution of + ve equivalent. |
| Candidates who use $s$ or $x$ instead of $d$ can be given marks BoD |
| M1 for getting to a single equation with one unknown having used two | <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& \begin{tabular}{l}
different equations. \\
Candidates who find \(2 d=120\) from their SE and then give a final answer \(d=60\) get A0. \\
Candidates who find \(2 d=120\) from their SE and then give no further work get A1.
\end{tabular} \& \\
\hline \& \begin{tabular}{l}
ii \\
ii \\
ii
\end{tabular} \& \[
\begin{aligned}
\& 4(m)=(m) g \sin \theta \\
\& \theta=24.1^{\circ}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Mass may be omitted on both sides. Allow \(4(m)=(m) g \cos \theta\) \\
Value for mass assumed or wrong, allow M1AO fortuitous.
\end{tabular} \& \\
\hline \& iii \({ }^{\text {ii }}\) \& \[
6=m g \cos 24.1
\]
\[
m=0.671 \mathrm{~kg}
\] \& M1

A1 \& | Or $6=m g \sin 24.1$, uses numerical answer referring to (ii) |
| :--- |
| www |
| Examiner's Comments |
| 5(i) was well attempted by nearly all, with many correct solutions seen. However, it was common for candidates to lose the last mark by giving a value for $d$ but not giving the length of the plane. |
| 5(ii) and 5(iii) were often omitted, and only the best candidates knew how to answer each part. In 5(iii) a version of Newton's Second Law $(4 m=6)$ was sometimes offered as the solution. |
| In nearly all cases when (iii) was correctly answered, candidates used their answer to part (ii). However, a few chose a different route, namely $(m g)^{2}=(4 m)^{2}+6^{2}$. The unfamiliar way in which this topic (component of force perpendicular to an inclined plane) was tested led to a rash of unexpected errors. The two most frequent were resolving 6, rather than the weight, and using sine function, rather than cosine. |
| Candidates who use cos in (ii) and sin in (iii) will fortuitously get the correct mass. However (iii) is given M1A0 | \&  <br>

\hline \& \& Total \& 10 \& \& <br>
\hline
\end{tabular}

| 4 | i | $2.5 \sin \theta=2.4$ | M1 | $2.5 \operatorname{CorS} \theta=2.4$ | $2.5 \cos \theta=2.4 \mathrm{M} 1$ hence |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | i | $\theta=73.7$ | A1 | Accept 74 | $\theta=16.3 \mathrm{AO}$ |
|  | i | $2.5 \cos \theta=F$ | M1 | $F=2.5 \operatorname{SorC} \theta$, opposite to that above | $2.5 \sin \theta=F \quad \mathrm{M} 1$ hence |
|  | i | $F=0.7$ | A1 | Exact, but allow 0.702 (3 sf) $\theta=73.7$ | $F=0.7(00) \mathrm{A} 1 \mathrm{SC}$ |
|  | i | OR |  |  |  |
|  | i | $2.4^{2}+F^{2}=2.5^{2}$ or $F^{2}=2.5^{2}-2.4^{2}$ | M1 |  |  |
|  |  |  |  | Examiner's Comments |  |
|  | i | $F=0.7$ | A1 | The familiarity of the material gave rise to many correct answers. One error was using the value of $2.5 \cos 73.7$ as $F$. This gives 0.702 as the answer which is wrong correct to 3 significant figures; however there was no penalty for the mistake on this occasion. | $F$ can then be used to find $\theta$ |
|  | ii | $2.4=0.2 a$ | M1 | N2L, Any horizontal force other than F, 0.7, 2.5 (Do not treat removing / using 2.5 as a MR) | Including g, automatically M0 |
|  | ii | $a=12 \mathrm{~ms}^{-2}$ | A1 | 12.0 from 2.5sin73.7/0.2 |  |
|  | ii | Bearing (0) $90^{\circ}$ OR |  |  | Horizontal is B0 (ambiguous) |
|  |  |  |  | Angle value other than exactly $90^{\circ}$ or $0^{\circ} \mathrm{BO}$ Allow B1 for force dirn, if accn not found |  |
|  |  |  |  | Examiner's Comments |  |
|  | ii | "To right"," opposite old 2.4 N force" etc | B1 | Was unfamiliar, and in consequence badly answered. There was little understanding that removal of the 2.4 N force from a system in equilibrium must create a resultant force of equal magnitude with the opposite sense. Indeed, calculations often ended when the resultant of the two remaining forces had been found |  |
|  |  | Total | 7 |  |  |




|  | ii ii ii ii | OR $y=x \tan \theta-g x^{2} \sec ^{2} \theta / 2 L^{2}$ <br> Substitute values for $y, x, \theta$ $1.5=8 \tan 20-98^{2} \mathrm{sec}^{2} 20 / 2 \mathrm{~V}^{2}$ <br> Attempt to solve a quadratic for $V$ $V=15.9$ | *B1 <br> dep*M1 <br> A1 <br> dep*M2 <br> A1 | Use equation of trajectory <br> SC M1 for solving for $V^{2}$ $V=15.8606 \ldots$ <br> Examiner's Comments <br> This was well done in terms of the candidates knowing what was required, but in some cases the algebra wasn't always equal to the task. A small minority of candidates made the unfortunate assumption that the target was hit at the highest point of the trajectory. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 12 |  |
| 7 | a | $\begin{aligned} & \mathbf{g}=\binom{0}{-9.8} \\ & \binom{15}{-8}+\binom{-7}{-2}+5\binom{0}{-9.8}=5 \mathbf{a} \\ & \mathbf{a}=\binom{1.6}{-11.8}_{\text {or }}\binom{1.6}{-\mathrm{g}-2} \end{aligned}$ | $\begin{gathered} \mathrm{B} 1(\mathrm{AO} \\ 1.2) \mathrm{E} \end{gathered}$ <br> M1 (AO <br> 3.3)E <br> A1(AO <br> 3.4)C <br> [3] | Use of $F=$ ma with correct $m$ and two terms of F correct or wrote |




|  |  | $\begin{aligned} & \theta-\alpha=\sin ^{-1}\left(\frac{1}{R}\right) \\ & \theta=60.3 \\ & T=8 g \sin 60.3-8 g \cos 60.3 \\ & T=29.3 \mathrm{~N} \end{aligned}$ | A1 <br> (AO1.1) <br> M1 <br> (AO3.4) <br> A1 <br> (AO2.2a) <br> [7] | Correct method for finding $\theta$ <br> If $\theta$ is obtained by calculator with none of the above marks earned, allow SC B2 for 60.3 or better <br> Using their $\theta$ to evaluate $T$ | 8.9848... 60.325068... 29.303539... |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 15 |  |  |  |
| 9 | a | $\begin{aligned} & \text { Acceleration component }=g \sin 30^{\circ} \\ & v_{M}^{2}=4.2^{2}+2\left(g \sin 30^{\circ}\right) x \\ & R=m g \cos 30^{\circ} \\ & F=\frac{\sqrt{3}}{6} m g \cos 30^{\circ} \\ & m g \sin 30^{\circ}-F=m a \end{aligned}$ | $\begin{gathered} \text { B1 (AO } \\ 1.2) \\ \text { M1 (AO } \\ 3.3) \\ \\ \text { B1 (AO } \\ 3.3) \\ \\ \hline \text { M1 (AO } \\ 3.4) \\ \text { M1* (AO } \\ \text { 3.3) } \end{gathered}$ | Correct acceleration component seen <br> Use of $V^{2}=U^{2}+$ 2as for the motion from $A$ to $M$ <br> Resolving perpendicular to the plane <br> Use of $F=\mu R$ for the motion of $P$ between $M$ and $B$ Use of Newton's | $x$ is the distance $A M$ and $v_{M}$ is the speed of $P$ at $M$ <br> $R$ is the normal contact force between $P$ and the plane, $m$ is the mass of $P$ |  |




\begin{tabular}{|c|c|c|c|c|}
\hline \& \[
\begin{aligned}
\& R=\frac{2 V^{2}}{g} \times \frac{\sqrt{2 g H}}{V} \times \frac{\sqrt{V^{2}-2 g H}}{V} \\
\& R=\frac{2}{g} \sqrt{2 g H} \sqrt{R_{0} g-2 g H} \\
\& \Rightarrow R^{2}=\frac{4}{g^{2}}(2 g H)\left(R_{0} g-2 g H\right)
\end{aligned}
\]
\[
\Rightarrow 16 H-8 R_{0} H+R^{2}=0
\] \& \begin{tabular}{l}
\[
\begin{gathered}
\text { M1 (AO } \\
\left.{ }_{3.4}\right)
\end{gathered}
\] \\
A1 (AO \\
2.2a) \\
[5]
\end{tabular} \& \begin{tabular}{l}
Eliminate Vusing maximum range and remove square roots - dependent on both previous M marks \\
AG - sufficient working must be shown
\end{tabular} \& \\
\hline \& \begin{tabular}{|l|l}
\hline (i) \& \begin{tabular}{l}
\(16 H^{\circ}-1600 H+36864=0\) \\
\(H=64 \mathrm{~m}\) or 36 m
\end{tabular} \\
\hline (ii) \& \begin{tabular}{l}
\(\sin 2 \alpha=\frac{192}{200}\) \\
\(a=36.9^{\circ}\) \\
\(a=53.1^{\circ}\)
\end{tabular} \\
\hline
\end{tabular} \& M1 (AO
\(1.1)\)
A1 (AO
1.1)
[2]
M1 (AO
\(1.1)\)

A1 (AO
$1.1)$
A1 (AO
$1.1)$

$[3]$ \& | Substitute given values to obtain a quadratic in $H$ BC |
| :--- |
| Use given values to obtain a trigonometric equation in $a$ 0.644 rad |
| 0.927 rad | \& <br>

\hline
\end{tabular}



