1. In this question the unit vectors \mathbf{i} and \mathbf{j} are in the directions east and north respectively.

Distance is measured in metres and time in seconds.

A ship of mass 100000 kg is being towed by two tug boats. The cables attaching each tug to the ship are horizontal. One tug produces a force of ($350 \mathrm{i}+400 \mathrm{j}$) N and the other tug produces a force of (250i - 400j) N. The total resistance to motion is 200 N . At the instant when the tugs begin to tow the ship, it is moving east at a speed of $1.5 \mathrm{~m} \mathrm{~s}^{-1}$.
(a) Explain why the ship continues to move directly east.
(b) Find the acceleration of the ship.
(c) Find the time which the ship takes to move 400 m while it is being towed. Find its speed after moving that distance.
2.

Particles P and Q, of masses 0.2 kg and $M \mathrm{~kg}$ respectively, where $M>0.2$, are attached to the ends of a light inextensible string. The string passes over a smooth fixed pulley (see diagram). The system is in motion with the string taut and with each of the particles moving vertically.

The tension in the string is 2.1 N .
(a) Show that the acceleration of P is $0.7 \mathrm{~m} \mathrm{~s}^{-2}$.
(b) Find the value of M.
(c) At one instant P has speed $0.3 \mathrm{~m} \mathrm{~s}^{-1}$ upwards. Find its speed 1.5 seconds later,
assuming that it has not yet reached the pulley.
3. In this question the horizontal unit vectors \mathbf{i} and j are in the directions east and north respectively.
A toy car of mass 0.5 kg is moving so that its acceleration vector a ms^{-2} at time t seconds is given by
$\mathbf{a}=6 t \mathbf{i}+\left(2-3 t^{2}\right) \mathbf{j}$. When $t=2$ the horizontal force acting on the car is F N .
Find

- the magnitude of F,
- the bearing of F.

4.

A particle P of mass 0.4 kg is attached to one end of a light inextensible string. The string passes over a small smooth fixed pulley, and a particle Q of mass 0.1 kg is attached to the other end of the string. Prests in limiting equilibrium on a horizontal surface which is 0.4 m below the pulley, with the string taut and in the same vertical plane as P, Q and the pulley. P is 0.5 m from the pulley (see diagram).
(i) Calculate the coefficient of friction and the magnitude of the contact force exerted on $P_{\text {[7] }}$
by the surface.
Q is now moved to the position on the surface below the pulley such that the portion of the string attached to Q is vertical. Phangs freely below the pulley and the portion of the string attached to P is vertical. Both particles are at rest when Q is released.
(ii)

Find the acceleration of the particles and the tension in the string while P is descending.
P strikes the surface and remains at rest. Q comes to instantaneous rest immediately before reaching the pulley.
(iii) Find the length of the string.
5. In this question the horizontal unit vectors \mathbf{i} and j are in the directions east and north respectively.

A model ship of mass 2 kg is moving so that its acceleration vector a ms^{-2} at time t seconds is given by
$\mathbf{a}=3(2 t-5) \mathbf{i}+4 \mathbf{j}$. When $t=T$, the magnitude of the horizontal force acting on the ship is 10 N.

$$
\text { Find the possible values of } T \text {. }
$$

6. Particles P and Q, of masses 3 kg and 5 kg respectively, are attached to the ends of a light inextensible string. The string passes over a smooth fixed pulley. The system is held at rest with the string taut. The hanging parts of the string are vertical and P and Q are above a horizontal plane (see diagram).

(a) Find the tension in the string immediately after the particles are released.

After descending $2.5 \mathrm{~m}, Q$ strikes the plane and is immediately brought to rest. It is given that P does not reach the pulley in the subsequent motion.
(b) Find the distance travelled by P between the instant when Q strikes the plane and the instant when the string becomes taut again.

Mark scheme

Question		Answer/Indicative content	Marks	Guidance	
1	a	Resultant force from the tug boats is positive so it is moving east There is zero resultant force in the \mathbf{j} direction, so it is not moving north or south	E1(AO2.2a) E1(AO2.2a) [2]	$(600 i)$ 	
	b	$350+250-200=100000 a$ Obtain $0.004 \mathrm{~m} \mathrm{~s}^{-2}$	M1 (AO3.3) A1(AO1.1) [2]	Use $F=m a$. Allow sign errors and one missing force	
	c	$\begin{aligned} & 400=1.5 t+\frac{1}{2}(0.004) t^{2} \\ & 0.002 t+1.5 t-400=0 \end{aligned}$ Obtain 209 (seconds) $v^{2}=1.5^{2}+2(0.004)(400)$ Obtain $2.33\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	M1(AO3.1b) A1(AO1.1) M1(AO3.4) A1(AO1.1) M1(AO3.4) A1(AO1.1)	Use $s=u t+\frac{1}{2} a t^{2}$ Obtain correct quadratic. Any equivalent form Use any method to solve their quadratic If negative root given (-958.63088) this must be clearly discarded Use $v^{2}=u^{2}+2 a s$ with their a or $v=$ $u+a t$ with their a and t Accept better (2.3345235)	Including BC Accept better (208.630877) but not 208
		Total	10		
2	a	$T-0.2 g=0.2 a$ $a=\frac{2.1-0.2 \times 9.8}{0.2}=\frac{0.14}{0.2}=0.7$	M1 (AOB.3) E1 (AO1.1) [2]	Attempt N2L for P AG	Must include sufficient working

(

