1. Three horizontal forces, acting at a single point, have magnitudes $12 \mathrm{~N}, 14 \mathrm{~N}$ and 5 N and act along bearings $000^{\circ}, 090^{\circ}$ and 270° respectively. Find the magnitude and bearing of their resultant.
2. Two forces of magnitudes 8 N and 12 N act at a point O.
i. Given that the two forces are perpendicular to each other, find
a. the angle between the resultant and the 12 N force,
b. the magnitude of the resultant.
ii. It is given instead that the resultant of the two forces has magnitude $R \mathrm{~N}$ and acts in a direction perpendicular to the 8 N force (see diagram).

a. Calculate the angle between the resultant and the 12 N force.
b. Find R.
3.

A particle rests on a smooth horizontal surface. Three horizontal forces of magnitudes $2.5 \mathrm{~N}, \digamma \mathrm{~N}$ and 2.4 N act on the particle on bearings $\theta^{\circ}, 180^{\circ}$ and 270° respectively (see diagram). The particle is in equilibrium.
i. Find θ and F.

The 2.4 N force suddenly ceases to act on the particle, which has mass 0.2 kg .
ii. Find the magnitude and direction of the acceleration of the particle.
4.

Two forces of magnitudes 6 N and 10 N separated by an angle of 110° act on a particle P, which rests on a horizontal surface (see diagram).
i. Find the magnitude of the resultant of the 6 N and 10 N forces, and the angle between the resultant and the 10 N force.

The two forces act in the same vertical plane. The particle P has weight 20 N and rests in equilibrium on the surface. Given that the surface is smooth, find
ii. the magnitude of the force exerted on P by the surface,
iii. the angle between the surface and the 10 N force.
5. Two forces each of magnitude 4 N have a resultant of magnitude 6 N .
i. Calculate the angle between the two 4 N forces.

The two given forces of magnitude 4 N act on a particle of mass $m \mathrm{~kg}$ which remains at rest on a smooth horizontal surface. The surface exerts a force of magnitude 3 N on the particle.
ii. Find m, and give the acute angle between the surface and one of the 4 N forces.
6. Two forces, of magnitudes 2 N and 5 N , act on a particle in the directions shown in the diagram below.

5 N
(a) Calculate the magnitude of the resultant force on the particle.
(b) Calculate the angle between this resultant force and the force of magnitude 5 N .

Mark scheme

Question		Answer/Indicative content	Marks B1	Part marks and guidance	
1		$x=14-5$ $R^{2}=(14-5)^{2}+12^{2}$ $R=15 \mathrm{~N}$ $\tan \theta=(14-5) / 12$ $\theta=36.9^{\circ}$		Or 5-14 Pythagoras, R as hypotenuse, 3 squared terms Any correct trig, angle between 12 and R targetted. Accept 37, 037 Examiner's Comments Most frequently candidates started the paper by gaining full marks, though 3 out of 5 was a common total among candidates who did not target the "bearing". Some scripts contained a confusion between bearings and polar angles. A small minority of candidates began by finding the resultant of the 5 N and 12 N forces, and then combining it with the 14 N force. This gives a diagram which should contain an obtuse angle and calculation which incorporates the ambiguous case of the sine rule. This was not done.	
		Total	5		
2	i i i i i i	(a) $\tan \theta=8 / 12$ $\theta=33.7^{\circ}$ OR correct trig using ans (i)(b) $\sin \theta=8 / \operatorname{cv}(14.4) \text { or } \cos \theta=12 / \operatorname{cv}(14.4)$ $\theta=33.7^{\circ}$ (b) $R^{2}=8^{2}+12^{2}$ $R=14.4 \mathrm{~N}$	M1 A1 M1 A1 M1 A1	Must be correct angle. Must be correct angle A1 needs $2 / 2$ in (i)(b). $\cos \theta=$ $12 / 14.4$ gives $\theta=33.6$ A1 Pythagoras, 3 squared terms, R as hypotenuse Accept $4 \sqrt{ } 13$ not $\sqrt{ } 208$	
	ii	(a) $12 \mathrm{CorS} \theta= \pm 8$	M1	Either angle.	

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \& \& \& \multicolumn{2}{|l|}{Both approaches were generally successful. However, using the cosine rule on an incorrect diagram which reflected subtraction - not addition was by far the most frequent approach, and led to candidates usually obtaining 2 marks out of 4 .} \& \\
\hline \& ii \& \begin{tabular}{l}
\[
\begin{aligned}
\& m g=6+3 O R m g=4 \cos (\operatorname{Ans}(\mathrm{i}) / 2)+4 \cos ((\mathrm{Ans}(\mathrm{i}) / 2) \\
\& +3 \\
\& m=0.918
\end{aligned}
\] \\
Angle \(=48.6^{\circ}\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
B1/
\end{tabular} \& \begin{tabular}{l}
Must have signs corre \\
\(\mathrm{Ft}(90-\mathrm{cv}(\) angle in (i)) \\
Examiner's Comment \\
Candidates needed to that the 6 N resultant perpendicular to the on which the particle would be demonstrat the angle in (ii) equal complement of half th which a mark was aw value of \(m\) could be d the given 6 N resultan candidates who resol (using an erroneous angle in (i)) gained a but not an accuracy m candidates lost a mark the mass as 0.92 kg , 0.918 kg .
\end{tabular} \& appreciate would be mooth surface sted. This by having the angle in (i), for rded. The termined using So d 4 N forces swer for the thod mark, ark. Some through giving ather than \& \\
\hline \& \& Total \& 7 \& \& \& \\
\hline \& a \& \begin{tabular}{l}
Attempt resolution of forces \\
Horizontal component \(=5+2 \cos 40(=6.5321)\) \\
Vertical component \(=2 \sin 40(=1.2856)\) \\
\(\sqrt{6.5321^{2}+1.2856^{2}}=6.66 \mathrm{~N}\)
\end{tabular} \& M1(AO
1.1a)
A1(AO
1.1)

A1(AO
1.1)

[3] \& \begin{tabular}{l}
Allow sin / cos confusion

Allow for either the horizontal or vertical component correct

Use correct method for magnitude

 \&

OR

M1

Form triangle of forces A1

Use cosine rule with 140°

A1
\end{tabular} \&

\hline
\end{tabular}

