1. Find

$$\int \left(2 - \frac{1}{x}\right)^2 dx,$$
$$\int (4x+1)^{\frac{1}{3}} dx$$

[5]

[7]

[6]

2.

Use the substitution
$$u = 2x + 1$$
 to evaluate $\int_0^{\frac{1}{2}} \frac{4x - 1}{(2x + 1)^5} dx$.

3. Use the substitution
$$u = 1 + \ln x$$
 to find $\int \frac{\ln x}{x(1 + \ln x)^2} dx$.

4. i. Show that
$$\frac{1}{1 - \tan x} - \frac{1}{1 + \tan x} \equiv \tan 2x$$
.

[2]

ii. Hence evaluate
$$\int_{\frac{1}{12}\pi}^{\frac{1}{6}\pi} \left(\frac{1}{1-\tan x} - \frac{1}{1+\tan x}\right) dx$$
, giving your answer in the form $a \ln b$.

[5]

5. By first using the substitution
$$t = \sqrt{x+1}$$
, find $\int e^{2\sqrt{x+1}} dx$.

6.

Use the substitution
$$u = x^2 - 2$$
 to find $\int \frac{6x^3 + 4x}{\sqrt{x^2 - 2}} dx$.

[6]

[6]

(a) Find
$$\int 5x^3 \sqrt{x^2 + 1} \, dx$$
. [5]

(b) Find
$$\int \theta \tan^2 \theta d\theta$$
. You may use the result $\int \tan \theta d\theta = \ln |\sec \theta| + c$. [5]

Show that the two non-stationary points of inflection on the curve $y = 1n(1 + 4x^2)$ are (a) $x = \pm \frac{1}{2}$. [6]

The diagram shows the curve $y = \ln (1 + 4x^2)$ The shaded region is bounded by the curve and a line parallel to the *x*-axis which meets the curve where $x = \frac{1}{2}$ and $x = -\frac{1}{2}$.

(b) Show that the area of the shaded region is given by

$$\int_0^{\ln 2} \sqrt{\mathrm{e}^y - 1} \,\mathrm{d}y. \tag{3}$$

[2]

[3]

Show that the substitution $e^{\nu} = \sec^2 \theta$ transforms the integral in part (b) to (c) $\int_0^{\frac{1}{4}\pi} 2\tan^2 \theta \, d\theta$.

(d) Hence find the exact area of the shaded region.

9. Use the substitution
$$u = 1 + \ln x + x$$
 to find y
$$\int \frac{3(x+1)(1-\ln x - x)}{x(1+\ln x + x)} dx.$$
 [6]

© OCR 2017.

7.

8.

Page 2 of 20

The diagram shows the curve $y = \sqrt{4x-3}$ and the normal to the curve at the point (7, 5). The shaded region is bounded by the curve, the normal and the *x*-axis. Find the exact area [8] of the shaded region.

(a)
Use the substitution
$$u^2 = x + 1$$
 to find $\int e^{\sqrt{x+1}} dx$ [6]

(b) Make x the subject of the equation
$$y = e^{\sqrt{x+1}}$$
 [1]

(c)
Hence show that
$$\int_{e}^{e^4} ((\ln y)^2 - 1) dy = 9e^4$$
 [4]

^{12.} In this question you must show detailed reasoning.

 $(\frac{1}{4}\pi, 0)$

The diagram shows the curve $y = \frac{4\cos 2x}{3-\sin 2x}$, for $x \ge 0$, and the normal to the curve at the point $(\frac{1}{4}\pi, 0)$. Show that the exact area of the shaded region enclosed by the curve, the normal to the curve and the *y*-axis is $\ln \frac{9}{4} + \frac{1}{128}\pi^2$. [10]

13.

Use a suitable trigonometric substitution to find
$$\int \frac{x^2}{\sqrt{1-x^2}} dx$$
 [7]

END OF QUESTION paper

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance		
1		i	Expand to produce form $k_1 + \frac{k_2}{x} + \frac{k_3}{x^2}$	M1	For non-zero constants k_1 , k_2 , k_3 ; allow if middle term appears as two, so far, unsimplified terms		
		i	Obtain $4x - 41$ N $x - \frac{1}{x}$ or $4x - 41$ N $x - \frac{1}{x}$ or $4x - 41$ N $x - x^{-1}$	A1	Condoning absence of modulus signs but A0 if expression involves 1n <i>x</i> or 4 1n <i>x</i>		
		ii	Integrate to obtain form $k(4x+1)^{\frac{4}{3}}$	M1	Any non-zero constant <i>k</i>		
		ii	Obtain $\frac{3}{16}(4x+1)^{\frac{4}{3}}$	A1	With coefficient simplified		
		ii	Include + <i>c</i> or + <i>k</i> at least once anywhere in answer to question 2	B1	Even if associated with incorrect integral Examiner's Comments It was disappointing that this question involving two routine integration requests did not result in greater success. Only 39% of the candidates recorded full marks. The main problem was with part (i) where many candidates did not appreciate that the first step had to be expansion of the integrand; there were many attempts featuring $(2 - \frac{1}{x})^3$. Amongst those who did		
					realise that expansion was needed, there were errors with signs. Candidates fared far better with part (ii) and the only errors to occur with any frequency were an incorrect power of $\frac{2}{3}$ and an incorrect coefficient of $\frac{3}{4}$. One mark was available for inclusion of the constant of integration and most candidates did earn this mark.		

Question		n	Answer/Indicative content	Marks	Part marks and guidance
			Total	5	

Question	Answer/Indicative content	Marks	Part marks and guidance			
2	Attempt diff to connect d <i>u</i> & d <i>x</i>	M1	or find $\frac{du}{dx}$ or $\frac{dx}{du}$			
	Correct result e.g. $\frac{du}{dx} = 2$ or $du = 2 dx$	A1				
	Indef integ in terms of $u = \frac{1}{2} \int \frac{2u - 3}{u^5} (du)$	A1	Must be completely in terms of <i>u</i> .			
	Integrate to $\frac{u^{-3}}{-3} - \frac{3u^{-4}}{-8}$ oe	A1A1	or (using 'by parts') $\frac{(2u-3)u^{-4}}{-8} - \frac{u^{-3}}{12}$	Award B1,B1 for $\frac{4u^{-3}}{-3} - \frac{3u^{-4}}{-2}$ or for $\frac{2u^{-3}}{-3} - \frac{3u^{-4}}{-4}$ or for $\frac{(2u-3)u^{-4}}{-2} - \frac{u^{-3}}{3}$ or for $\frac{(2u-3)u^{-4}}{-4} - \frac{u^{-3}}{6}$		
	Use correct variable & correct values for limits	M1	Provided minimal attempt at ∫f(<i>u</i>)du made			

Question	Answer/Indicative content	Marks	Part marks and guidance		
Question	Answer/Indicative content = $\frac{-23}{384}$ oe (-0.059895)	Marks M1	Part marks an Accept decimal answer only if minimum of first 3 marks scored Examiner's Comments This question was relatively straightforward provided candidates were meticulous in the presentation of their work and in any algebraic manipulation that was necessary. Many did not achieve the transformation of the numerator $4x - 1$ into 2u - 3. A not insignificant number cancelled the '2' in this numerator with the '2' produced by $dx = \frac{1}{2} du$. The denominator of the transformed integral, $2u^5$, frequently became $(2u)^{-5}$ in the numerator. The ' $\frac{1}{2}$ ' was frequently overlooked. Even though it was easy to separate the transformed integral into two relatively simple parts, many used	nd guidance	
	[ISW,e.g. changing to $\frac{23}{384}$]	7	integral into two relatively simple parts, many used the idea of integration by parts again. It was interesting to note that some candidates managed to apply the correct limits to a correct function, only to get an incorrect answer. Were they using their calculators incorrectly, particularly with negative values?		

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance		
3					Examiner's Comments The process of integration by substitution was well known and most candidates managed to get to the first stage of needing to integrate $\frac{u-1}{u^2}$. Although most had an idea of what to do, the integration of $-\frac{1}{u^2}$ proved harder than expected. The place where the majority fell down was at the end, when they forgot to re-substitute; perhaps candidates were more used to substitution being used with a definite, rather than		
			Find du in terms of dx (or vv) or $\frac{du}{dx}$ or $\frac{dx}{du}$	M1	indefinite, integral. An attempt – not necessarily accurate No evidence of x at this A1 stage		
			Substitute, changing given integral to $\int \frac{u-1}{u^2} (du)$	A1			
			Provided of form $\frac{au+b}{u^2}$, <u>either</u> split as $\frac{au}{u^2} + \frac{b}{u^2}$	M1	or use 'parts' with 'u' = au + b , 'dv' = $\frac{1}{u^2}$		
			Integrate as $\ln u + \frac{1}{u}$ or FT as $a \ln u - \frac{b}{u} [=F(u)]$	√A1	or $-(au+b)\frac{1}{u}+a\ln u$ FT [= G(u)]		

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance		
			Re-substitute $u = 1 + \ln x$ in G(u)	M1	Re-substitute $u = 1 + \ln x$ in F(u)		
			$\ln(1 + \ln x) + \frac{1}{1 + \ln x} (+ c)$ ISW	A1	or $ln(1 + ln x) - \frac{ln x}{1 + ln x} (+ c)$ ISW		
			Total	6			

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and guidance		
4		i	$\frac{(1 + \tan x) - (1 - \tan x)}{(1 - \tan x)(1 + \tan x)}$	M1	Combine (or write as 2 separate fractions) using common denominator	Accept with / without brackets in num Accept 1– tan <i>x</i> .1 + tan <i>x</i> in denom	
		i	$= \frac{2 \tan x}{1 - \tan^2 x} = \tan 2x$ Answer Given	A1	$\frac{2 \tan x}{1 - \tan^2 x}$ essential stage N.B. If tan <i>x</i> changed into $\frac{\sin x}{\cos x}$ before manipulation, apply same principles Examiner's Comments This was shown successfully by most although, as the answer was given, special notice was taken of each stage and for some $(1 - \tan x)(1 + \tan x) = 1 + \tan^2 x$ was sometimes in evidence. This earned the method mark (for knowing the	A0 for omission of any necessary brackets	
					not the accuracy mark.		
		ii	$\int \tan 2x dx = \lambda \ln(\sec 2x) \text{ or}$ $\mu \ln(\cos 2x) [= F(x)]$	M1			
		ii	$\lambda = \frac{1}{2}$ or $\mu = -\frac{1}{2}$	A1			
		ii	their $F\left[\frac{\pi}{6}\right]$ – their $F\left[\frac{\pi}{12}\right]$	M1	dependent on attempt at integration	i.e. not for $\tan\left(\frac{\pi}{3}\right) - \tan\left(\frac{\pi}{6}\right)$	
		ii	$\frac{1}{2}\ln 2 - \frac{1}{2}\ln \frac{2}{\sqrt{3}} \text{oe}$	A1	i.e. any correct but probably unsimplified numerical version		

Q	Question		Answer/Indicative content	Marks	Part marks and guidance		
		ii	$\frac{1}{2}\ln\sqrt{3} \text{or} \frac{1}{4}\ln 3$ or $\ln 3^{\frac{1}{4}}$ or $\frac{1}{2}\ln\frac{6}{2\sqrt{3}}$ oe ISW	+A1	 i.e. any correct version in the form <i>a</i> ln <i>b</i> Examiner's Comments The obvious errors were made here and the correct multiples of ln(sec 2 <i>x</i>) or ln(cos 2<i>x</i>) were frequently missing. The logarithmic work was usually well done. 		
			Total	7			

Question	Answer/Indicative content	Marks	Part marks and guidance		
5	$\frac{dt}{dx} = k(x+1)^{-\frac{1}{2}} \text{ or } \frac{dx}{dt} = 2t$ from $x = t^2 \pm 1$ oe	M1	or eg $kdt = \frac{dx}{\sqrt{x+1}}$ oe		
	$\int kt e^{2t} dt$	M1*	<i>k</i> is any non-zero constant		
	$kt \times \frac{1}{2} e^{2t} \pm k \int \frac{1}{2} e^{2t} dt$	M1dep*			
	$te^{2t} - \int e^{2t} dt$	A1	may be implied by the next A1		
	$te^{2t} - \frac{1}{2}e^{2t}$	A1			
	$\sqrt{x+1}e^{2\sqrt{x+1}} - \frac{1}{2}e^{2\sqrt{x+1}} + c$ cao www	A1	+ <i>c</i> may be seen in previous line only for A1 <u>Examiner's Comments</u> Most candidates earned the first two marks. Thereafter a surprising number either didn't recognise the need to use integration by parts, or attributed the variables the wrong way round and made no further progress. The many candidates who did use integration by parts usually went on to score five marks in total – most either missed off the constant of integration, or neglected to substitute back in for <i>x</i> .	if d <i>t</i> is not seen in the integral at some point impose a penalty of 1 mark from total mark of 2 or more	
	Total	6			

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance		
6			$\frac{\mathrm{d}u}{\mathrm{d}x} = 2x$ or $\frac{\mathrm{d}x}{\mathrm{d}u} = \frac{1}{2}(u\pm 2)^{-\frac{1}{2}}$ or	M1			
			$\frac{Ax^2 + B}{2}$ or better from	M1		or substitution of $x = (u \pm 2)^{\frac{1}{2}}$ in denominator from	
			replacing dx NB $\frac{6x^3 + 4x}{2x} = \frac{6x^2 + 4}{2}$			$\frac{\mathrm{d}x}{\mathrm{d}u}$	
			substitution of $x^2 = u \pm 2$ or $x = (u \pm 2)^{\frac{1}{2}}$ in numerator	M1	NB 3(<i>u</i> +2) +2 or 3(<i>u</i> +2) ^{3/2} + 2(<i>u</i> +2) ^{1/2}		
			$\int (\frac{3u+8}{\sqrt{u}}) \left[\mathrm{d}u \right] \mathrm{oe}$	A1	$\frac{3(u+2)+2}{\sqrt{u}}$ or better		
			$\frac{\frac{3u^{\frac{3}{2}}}{\frac{3}{2}} + \frac{8u^{\frac{1}{2}}}{\frac{1}{2}} \text{ oe}}{\frac{1}{2}}$	A1	or $6u^{3/2}$ +1 $6u^{\frac{1}{2}}$ – $4u^{3/2}$ from integration by parts		

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
	$2(x^2 - 2)^{\frac{3}{2}} + 16(x^2 - 2)^{\frac{1}{2}} + c \text{cao}$	A1	allow $2(x^2 - 2)^{\frac{1}{2}}(x^2 + 6) + c$ for final mark, A0 if <i>du</i> not seen at some stage in the integral	must see constant of integration here or in previous line and coefficients must be simplified for final A1 Examiner's Comments Most candidates understood the drill for integration by substitution, and most laboriously expressed dx in terms of u and du rather than factorising the numerator and cancelling out $2x$. The method marks were achieved by most, but poor algebra often led to the loss of the accuracy marks. Of those who successfully integrated the correct expression in u , a significant minority lost the final accuracy mark by omitting "+ c " or by failing to substitute back in terms of x.
	Total	6		

Qı	Question		Answer/Indicative content	Marks		nd guidance	
7		a	$u = x^{2} + 1$ du = 2xdx $\frac{5}{2}\int (u-1)u^{\frac{1}{2}}du$ $\frac{5}{2}\int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right)du$ $u^{\frac{5}{2}} - \frac{5}{3}u^{\frac{3}{2}} + c$ $\left(x^{2} + 1\right)^{\frac{5}{2}} - \frac{5}{3}\left(x^{2} + 1\right)^{\frac{3}{2}} + c$	M1(AO 1.1a) M1(AO1. 1) A1(AO1. 1) M1(AO1. 1) A1(AO1. 1) [5]	Attempt a substitution of x and dx Replace as $k j (u-1)u^{1} du$ far as Integrate their integral if in u Do not condone missing + <i>C</i> in both (a) and (b)	M0 for d <i>u</i> = d <i>x</i>	
		b	$\int \tan^2 \theta \mathrm{d}\theta = \int (\sec^2 \theta - 1) \mathrm{d}\theta$ $= \tan \theta - \theta$ $u = \theta, \mathrm{d}v = \tan^2 \theta$ So $\int \theta \tan^2 \theta \mathrm{d}\theta = \theta (\tan \theta - \theta) - \int (\tan \theta - \theta) \mathrm{d}\theta$ $-\frac{1}{2} \theta^2 + \theta \tan \theta - \ln \sec \theta + c$	M1(AO 1.1) A1(AO1. 1) M1(AO3. 1a) A1(AO1. 1) A1(AO1. 1) [5]	Award for sight of the intermediat e result Recognise integration by parts with appropriate choice of <i>u</i> and d <i>v</i> Obtain correct intermediat e result	OR M1 $\int \partial \tan^2 \partial d\theta = \int \theta (\sec^2 \theta - 1) d\theta$ A1 $= \int \theta \sec^2 \theta d\theta - \int \theta d\theta$ M1 $u = \theta$, $dv = \sec^2 \theta$ $\int \theta \tan^2 \theta d\theta$ $= \partial \tan^2 - \int \tan^2 \theta d\theta - \frac{1}{2} \theta^2$ A1 $= -\frac{1}{2}\theta^2 + \theta \tan^2 - \ln \sec^2 + c$	

Question		n	Answer/Indicative content	Marks	Part marks and guidance
			Total	10	

Qı	Jestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
8		а	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+4x^2} \times 8x$	B1(AO1. 1) B1(AO1	For $\frac{1}{1+4x^2}$		
			Attempt use of quotient rule or equivalent	1) M1*(AO3 .1a)	For 8 <i>x</i> Condone only one slip in differ entiating their 1st derivative,	Condone absence of necessary brackets	
			$\frac{d^2 y}{dx^2} = \frac{8 - 32x^2}{(1 + 4x^2)^2} = 0 \Longrightarrow x = \dots$	dep* M1(AO1.1)	but if the quotient rule is used it must have		
			$x^2 = \frac{1}{4} \Longrightarrow x = \pm \frac{1}{2}$	E1(AO2. 1)	in the numerator		
			When $x = \pm \frac{1}{2}, \frac{dy}{dx} = \pm 2 \neq 0$ and there is a	E1(AO2. 4)	Equate 2nd derivative to 0 and attempt to solve for <i>x</i>		
			sign change in the second derivative on either side of <i>x</i> so these points are therefore non- stationary points of inflection	[6]	AG		

Question	Answer/Indicative content	Marks	Part marks and guidance		
b	Area = $2\int_0^\lambda f(y) dy$ $y = \ln(1+4x^2) \Rightarrow 4x^2 = e^y - 1 \Rightarrow f(y) = \frac{1}{2}\sqrt{e^y - 1}$	E1(AO2. 1) E1(AO2. 1)	Correct integral stated for required area Sufficient		
	$\lambda = \ln\left(1 + 4\left(\frac{1}{2}\right)^2\right) = \ln 2$	E1(AO2. 1) [3]	working for Sufficient working for top limit of integral		
C	$e^{y} = \sec^{2}\theta \Rightarrow dy = 2\tan \theta d\theta$ $= 2\int_{0}^{\frac{1}{4}\pi} \sqrt{\sec^{2}\theta - 1} \tan \theta d\theta = 2\int_{0}^{\frac{1}{4}\pi} \tan^{2}\theta d\theta$	M1(AO3. 1a) A1(AO2. 2a) [2]	Allow for any genuine attempt to differentiate the given substitution and express integral entirely in terms of θIgnore limitsAllow for genuine differentiate this markIgnore limits		
d	Area = $2 \int_{0}^{\frac{1}{4}\pi} (\sec^2 \theta - 1) d\theta$ = $2 [\tan \theta - \theta]_{0}^{\frac{1}{4}\pi} = 2 \{ (\tan \frac{1}{4}\pi - \frac{1}{4}\pi) - (\tan \theta - \theta) \}$ = $2 (1 - \frac{1}{4}\pi)$	M1(AO3. 1a) A1ft(AO1 .1) A1(AO1. 1) [3]	Reducing to form $\int (a)$ sec ² θ + b) d θ Correctly integrating their $a \sec^2 \theta + b$ with correct use of limits		
	Total	14			

Question	Answer/Indicative content	Marks		Part marks a	nd guidance
9	$\frac{du}{dx} = 1 + \frac{1}{x}$ x + ln x = ±u ±1 oe substituted into the numerator	B1 M1	allow slip in substitution		
	$dx \text{ replaced by their}$ $\left(\frac{1}{\frac{1}{\sqrt{+1}}}\right) [du]_{\text{in integrand}}$ $\int \left(\frac{3(1-(u-1))}{u}\right) [du] \text{ oe}$ $A\ln u + Bu (+ c)$ $6\ln(1 + \ln x + x) - 3(1 + \ln x + x) + c \text{ oe isw}$	M1 A1 M1dep A1 [6]	may be simplified following $\int \left(\frac{A}{u} + B\right) du$ Examiner's Co It was pleasin many near pe to this tricky s question. The candidates we make a start, amount of pro-	$\int \left(\frac{6}{u} - 3\right) du$ if du and/or \int and/or + c not seen at some stage, withhold the final A1 omments g to see so rfect solutions ubstitution majority of ere able to although the press, but	
	Total	6	many candida able to make progress. Mos differentiated failed to rearra expression co Substitution in numerator for defeated man and sign error commonplace	the swere not much st correctly u, but often ange the mrectly. $1 - \ln x - x$ y and bracket swere a.	

Qı	uestion	Answer/Indicative content	Marks	Part marks and guidance
10		Differentiate to obtain	M1	For any non-zero constant <i>k</i>
		$k(4x-3)^{-\frac{1}{2}}$	A1	Or unsimplified equiv
		Obtain correct $2(4x-3)^{-\frac{1}{2}}$	M1	Using their attempt at first derivative: either using
		Use negative reciprocal of gradient to find intersection of normal with <i>x</i> -axis	A1	equation of normal
		Obtain $-\frac{5}{2}$ for gradient of normal and hence <i>x</i> = 9 or equiv such as base of	M1	$(y = -\frac{5}{2}x + \frac{45}{2})$ or relevant right-angled triangle
		triangle is 2	A1	
		Integrate to obtain	A1	For any non-zero constant p
		$p(4x-3)^{\frac{3}{2}}$	A1	Or unsimplified equiv
		Obtain correct $\frac{1}{6}(4x-3)^{\frac{3}{2}}$	[8]	Allow calculation apparently using only upper limit
		Use limits $\frac{3}{4}$ and 7 to obtain		
		$\frac{125}{6}$ for area under curve		Examiner's Comments
		Use triangle area to obtain		Many solutions to this question were impressive
		$\frac{155}{6}$ for shaded area		with candidates negotiating their way through the various steps with assurance. Approximately
				half of the candidates recorded full marks on this question. Most candidates
				and integration accurately and appreciated the need to find the point of intersection
				of the normal with the x- axis. There was some
				be used for the integration
				concluded by subtracting the area of the triangle from
				125

⁶ rather than adding it to

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and guidance	
					$\frac{125}{6}$. It was surprising how many candidates calculated the area of the triangle by integration rather than carrying out a simple $\frac{1}{2} \times 2 \times 5$ calculation.	
			Total	8		

Qı	Jestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
11		а	$2udu = dx$ $\int 2ue^u du$	B1(AO1. 1) M1(AO3. 1a)	Correct relationship soi Convert to integrand in		
			$2ue^u - \int 2e^u du$	A1(AO2. 4) M1(AO1.	Fully correct, including du	A0 if d <i>u</i> never seen, but all remaining marks available	
			2ue ^u – 2e ^u	A1(AO1. 1)	Attempt integration by parts	Condone	
			$2\sqrt{x+1}e^{\sqrt{x+1}} - 2e^{\sqrt{x+1}} + c$	A1(AO1. 1)	Fully correct in terms of <i>u</i>	no + <i>c</i> + <i>c</i> now	
				[6]	Fully correct in terms of <i>x</i>	required	
		b	$x = (\ln y)^2 - 1$	B1(AO2. 1) [1]	Correct equation in form $x =$ f(y)		

Question		Answer/Indicative content	Marks	Part marks and guidance	
c	C	the equation in (b) gives the area between curve and y-axis	B1(AO2. 4)	Identify geometrical relationship	
		$y = e^4 \Rightarrow x = 15, y = e \Rightarrow x = 0$	B1(AO2. 1) M1(AO2.	Identify <i>x</i> limits	
		area between curve and x -axis is $(8e^4 - 2e^4) - (2e - 2e) = 6e^4$	2a) A1(AO2. 4)	Use <i>x</i> limits in integral from (a)	
		area of rectangle is $15e^4$ hencereqd area is $15e^4 - 6e^4 = 9e^4$ A.G.	[4]	Conclude convincingl y	
		Total	11		

Question	Answer/Indicative content	Marks		Part marks ar	nd guidance
12	DR $\frac{dy}{dx} = \frac{(-8\sin 2x)(3 - \sin 2x) - (4\cos 2x)(-2\cos 2x)}{(3 - \sin 2x)^2}$	M1 (AO 3.1a)	Attempt use of quotient rule	Correct structure, including subtraction in numerator Could be	
		A1 (AO 1.1)	Obtain correct derivative	equivalent using the product rule Award A1 once	
	EITHER when $x = \frac{1}{4}\pi$,	M1 (AO 2.4)		correct derivative seen even subsequent ly spoiled by simplificatio n attempt	
	gradient $=\frac{-16-0}{4}=-4$		DR Attempt to find gradient at	EITHER State that	
	$\frac{OR}{\frac{(-8\sin\frac{\pi}{2})(3-\sin\frac{\pi}{2})-(4\cos\frac{\pi}{2})(-2\cos\frac{\pi}{2})}{(3-\sin\frac{\pi}{2})^2}} = -4$ gradient of normal is $\frac{1}{4}$ area of triangle is $\frac{1}{2} \times \frac{1}{16} \pi \times \frac{1}{4} \pi (=\frac{1}{128} \pi^2)$	B1ft (AO 2.1) M1 (AO 2.1)	$\frac{1}{4}$ π Correct gradient of normal Attempt area of	$x = \frac{1}{4}\pi$ is being used, and show their fraction with each term (including 0) explicitly evaluated before being simplified ie $x = \frac{1}{4}\pi$, gradient = -4 is M0 OR	

triangle ie

Question	Answer/Indicative content	Marks		Part marks a	nd guidance
		M1* (AO 3.1a)		$\frac{1}{4}\pi$ into their derivative and evaluate	
	$\int \frac{4\cos 2x}{3-\sin 2x} \mathrm{d}x = -2\ln 3-\sin 2x $	A1 (AO 1.1) M1d* (AO 2.1)	Obtain integral of form <i>k</i> ln 3 – sin2 <i>x</i>	ft their gradient of tangent <i>y</i> coordinate could come from using equation of	
	$\int_{0}^{\frac{1}{4}\pi} \frac{4\cos 2x}{3-\sin 2x} dx = (-2\ln 2) - (-2\ln 3)$	A1 (AO 1.1)	Obtain correct integral Attempt use of limits	normal gradient of normal Could integrate equation of normal	
	$2\ln 3 - 2 \ln 2 = \ln 9 - \ln 4 = \ln \frac{9}{4}$ OR $2\ln 3 - 2 \ln 2 = 2\ln \frac{3}{2} = \ln \frac{9}{4}$ hence total area is $\ln \frac{9}{4} + \frac{1}{128}\pi^{2} A.G.$	A1 (AO 2.1)	Correct area under curve	Condone brackets not modulus Allow any method, including substitution , as long as integral of correct form	
		[10]	Obtain correct total area	Possibly with unsimplifie d coefficient Using $\frac{1}{4}\pi$ and 0;	

Question	Answer/Indicative content	Marks	Part marks and guidance	
			correct order and subtraction (oe if substitution used) Must see a minimum of -2 ln2 +	
			2ln3 Must be exact At least one log law seen to be used before final	
			Any equivalent exact form AG so method must be fully correct	
			A0 if the gradient of -4 results from an incorrect derivative having been used A0 if	
			negative area of triangle not dealt with convincingl y Examiner's Comments	
			This was a question requiring detailed reasoning, so candidates were expected to show sufficient evidence of	

Question Answer/Indicative content Marks Part marks and guid	uidance
method throughout which not seen on all scripts. Candidates were generally successful when using the quotient rule to find the gradient of the curve. They were then expected to show evidence of finding the gradient at the given point; whilst some showed clear detail, others just stated the gradient with no justification. There were a variety of methods seen when finding the area of the triangle; the most common was to find the y intercept from the equation of the normal whereas others used integration. Some candidates identified that the $\frac{1}{18}\pi^{-7}$ in the given answer must be the area of the triangle and attempted to fudge their answer to obtain this, in some cases deleting correct work and replacing it with a solution that was now worth less credit. Most candidates were able to correctly integrate the equation of the curve, some by using a substitution of their choosing. The limits were usually used correctly, but not all candidates provided sufficient evidence of use of logarithms before the appearance of $\mathbb{I}^n \frac{1}{3}$.Exemplar 8	

Question	Answer/Indicative content	Marks	Part marks and guidance		
			This response gained full credit for a correct solution with sufficient justification seen throughout. The derivative is correct, and there is clear evidence of substitution to find the gradient of -4 just been stated, but with no evidence, then this would have been penalised. The equation of the normal is used to find the intercept on the <i>y</i> -axis, and this is used to find the area of the triangle. The integration is also correct and limits are used correctly. There is then clear evidence of at least one log law being used to obtain the correct area under the curve. The two areas are then summed		
	Total	10			

Question		n	Answer/Indicative content	Marks	Part marks and guidance		
13			Let $x = \sin \theta$ $I = \int \frac{\sin^2 \theta}{\cos \theta} \cos \theta d\theta$ $= \int \sin^2 \theta d\theta$ $= \int \frac{1 - \cos 2\theta}{2} d\theta$ $= \frac{1}{2} (\theta - \frac{\sin 2\theta}{2}) (+c)$ $= \frac{1}{2} (\sin^{-1}x - x\sqrt{1 - x^2}) + c$	M1 (AO 3.1a) A1 (AO 1.1) A1 (AO 1.1) M1 (AO 1.2) A1 (AO 1.1) A1 (AO 2.1) B1 (AO 2.5) [7]	Attempt use cos 2θ = 1 – $2\sin^2\theta$ Correct integral in terms of θ Correct integral in terms of. x + c	Correct method with $x =$ cos θ scores similarly	
			Total	7			