1. Find
i. $\int\left(2-\frac{1}{x}\right)^{2} \mathrm{~d} x$,
ii. $\quad \int(4 x+1)^{\frac{1}{3}} \mathrm{~d} x$
2. 

Use the substitution $u=2 x+1$ to evaluate $\int_{0}^{\frac{1}{2}} \frac{4 x-1}{(2 x+1)^{5}} \mathrm{~d} x$.
3.

Use the substitution $u=1+\ln x$ to find $\int \frac{\ln x}{x(1+\ln x)^{2}} \mathrm{~d} x$.
4.
i. Show that $\frac{1}{1-\tan x}-\frac{1}{1+\tan x} \equiv \tan 2 x$.
ii. Hence evaluate $\int_{\frac{1}{12} \pi}^{\frac{1}{6} \pi}\left(\frac{1}{1-\tan x}-\frac{1}{1+\tan x}\right) \mathrm{d} x$, giving your answer in the form $a \ln b$.
5.

By first using the substitution $t=\sqrt{x+1}$, find $\int \mathrm{e}^{2 \sqrt{x+1}} \mathrm{~d} x$.
6.

Use the substitution $u=x^{2}-2$ to find $\int \frac{6 x^{3}+4 x}{\sqrt{x^{2}-2}} \mathrm{~d} x$.
7. (a) Find $\int 5 x^{3} \sqrt{x^{2}+1} \mathrm{~d} x$.
(b) Find $\int \theta \tan ^{2} \theta \mathrm{~d} \theta$. You may use the result $\int \tan \theta \mathrm{d} \theta=\ln |\sec \theta|+c$.
8. Show that the two non-stationary points of inflection on the curve $y=1 \mathrm{n}\left(1+4 x^{2}\right)$ are (a) at $x= \pm \frac{1}{2}$.


The diagram shows the curve $y=\ln \left(1+4 x^{2}\right)$ The shaded region is bounded by the curve and a line parallel to the $x$-axis which meets the curve where $x=\frac{1}{2}$ and $x=-\frac{1}{2}$.
(b) Show that the area of the shaded region is given by

$$
\int_{0}^{\ln 2} \sqrt{\mathrm{e}^{y}-1} d y
$$

Show that the substitution $\mathrm{e}^{y}=\sec ^{2} \theta$ transforms the integral in part (b) to
(c) $\int_{0}^{\frac{1}{4} \pi} 2 \tan ^{2} \theta \mathrm{~d} \theta$.
(d) Hence find the exact area of the shaded region.
9.

Use the substitution $u=1+\ln x+x$ to find $y \int \frac{3(x+1)(1-\ln x-x)}{x(1+\ln x+x)} \mathrm{d} x$.


The diagram shows the curve $y=\sqrt{4 x-3}$ and the normal to the curve at the point $(7,5)$.
The shaded region is bounded by the curve, the normal and the $x$-axis. Find the exact area [8] of the shaded region.
11.


The diagram shows the curve $y=\mathrm{e}^{\sqrt{x+1}}$ for $x \geq 0$.
(a)

Use the substitution $u^{2}=x+1$ to find $\int \mathrm{e}^{\sqrt{x+1}} \mathrm{~d} x$.
(b) Make $x$ the subject of the equation $y=\mathrm{e}^{\sqrt{x+1}}$.
(c) Hence show that $\int_{\mathrm{e}}^{\mathrm{e}^{4}}\left((\ln y)^{2}-1\right) \mathrm{d} y=9 \mathrm{e}^{4}$.
12. In this question you must show detailed reasoning.


The diagram shows the curve $y=\frac{4 \cos 2 x}{3-\sin 2 x}$, for $x \geq 0$, and the normal to the curve at the point $\left(\frac{1}{4} \pi, 0\right)$. Show that the exact area of the shaded region enclosed by the curve, the normal to the curve and the $y$-axis is $\ln \frac{9}{4}+\frac{1}{128} \pi^{2}$.
13.

Use a suitable trigonometric substitution to find $\int \frac{x^{2}}{\sqrt{1-x^{2}}} \mathrm{~d} x$.


| Question |  | Answer/Indicative content | Marks | Part marks and guidance |
| :--- | :--- | :--- | :---: | :---: |
|  |  | Total | 5 |  |



| Question |  | Answer/Indicative content | Marks | Part marks and guidance |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |



| Question |  | Answer/Indicative content | Marks | Part marks and guidance |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | Re-substitute $u=1+\ln x$ in <br> $\mathrm{G}(u)$ <br> $\ln (1+\ln x)+\frac{1}{1+\ln x}(+\mathrm{c})$ <br> ISW | A 1 | Re-substitute $u=1+\ln x$ in <br> $\mathrm{F}(u)$ |
| or |  |  |  |  |



| Question |  | Answer/Indicative content | Marks | Part marks and guidance |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | ii | $\frac{1}{2} \ln \sqrt{3}$ or $\frac{1}{4} \ln 3$ <br> or $\ln 3^{1 / 4}$ or $\frac{1}{2} \ln \frac{6}{2 \sqrt{3}}$ oe ISW | + A1 | i.e. any correct version in <br> the form $\ln b$ <br> Examiner's Comments |
| The obvious errors were <br> made here and the correct <br> multiples of ln(sec $2 x)$ or <br> ln(cos $2 x)$ were frequently <br> missing. The logarithmic <br> work was usually well done. |  |  |  |  |




| Question |  | Answer/Indicative content | Marks | Part marks and guidance |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | $2\left(x^{2}-2\right)^{\frac{3}{2}}+16\left(x^{2}-2\right)^{\frac{1}{2}}+c$ cao | A1 | allow <br> $2\left(x^{2}-2\right)^{1 / 2}\left(x^{2}+6\right)+c$ for <br> final mark, A0 if du not seen <br> at some stage in the <br> integral | must see constant of <br> integration here or in <br> previous line and <br> coefficients must be <br> simplified for final A1 <br> Examiner's Comments |



| Question |  | Answer/Indicative content | Marks | Part marks and guidance |
| :--- | :--- | :--- | :---: | :---: |
|  |  | Total | 10 |  |



| Question | Answer/Indicative content | Marks | Part marks and guidance |  |
| :---: | :---: | :---: | :---: | :---: |
| b | $\begin{aligned} & \text { Area }=2 \int_{0}^{\lambda} \mathrm{f}(y) \mathrm{d} y \\ & y=\ln \left(1+4 x^{2}\right) \Rightarrow 4 x^{2}=\mathrm{e}^{y}-1 \Rightarrow \mathrm{f}(y)=\frac{1}{2} \sqrt{\mathrm{e}^{y}-1} \\ & \lambda=\ln \left(1+4\left(\frac{1}{2}\right)^{2}\right)=\ln 2 \end{aligned}$ | E1(AO2. <br> 1) <br> E1(AO2. <br> 1) <br> E1(AO2. <br> 1) <br> [3] | Correct integral stated for required area <br> Sufficient <br> working for Sufficient working for top limit of integral |  |
|  | $\mathrm{e}^{y}=\sec ^{2} \theta \Rightarrow \mathrm{~d} y=2 \tan \theta \mathrm{~d} \theta$ $=2 \int_{0}^{\frac{1}{4} \pi} \sqrt{\sec ^{2} \theta-1} \tan \theta \mathrm{~d} \theta=2 \int_{0}^{\frac{1}{4} \pi} \tan ^{2} \theta \mathrm{~d} \theta$ | M1(AO3. <br> 1a) <br> A1(AO2. <br> 2a) <br> [2] | Allow for Ignore <br> any limits for <br> genuine this mark <br> attempt to  <br> differentiate  <br> the given  <br> substitution  <br> and  <br> express  <br> integral  <br> entirely in  <br> terms of $\theta$  <br> AG; must  <br> show  <br> evidence  <br> for change  <br> of limits  |  |
|  | $\mathrm{d} \quad$Area $=2 \int_{0}^{\frac{1}{4} \pi}\left(\sec ^{2} \theta-1\right) \mathrm{d} \theta$ <br> $=2[\tan \theta-\theta]_{0}^{\frac{1}{4} \pi}=2\left\{\left(\tan \frac{1}{4} \pi-\frac{1}{4} \pi\right)-(\tan 0-0)\right\}$$=2\left(1-\frac{1}{4} \pi\right)$ | M1(AO3. <br> 1a) <br> A1ft(AO1 <br> .1) <br> A1(AO1. <br> 1) <br> [3] | Reducing to form $\int(a$ $\left.\sec ^{2} \theta+b\right)$ $\mathrm{d} \theta$ Correctly integrating their a $\sec ^{2} \theta+b$ with correct use of limits |  |
|  | Total | 14 |  |  |




| Question |  | Answer/Indicative content | Marks | Part marks and guidance |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  | $\frac{125}{6}$. It was surprising how <br> many candidates calculated <br> the area of the triangle by <br> integration rather than <br> carrying out a simple |


| Question |  | Answer/Indicative content | Marks | Part marks and guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | a | $\begin{aligned} & 2 u \mathrm{~d} u=\mathrm{d} x \\ & \int 2 u \mathrm{e}^{u} \mathrm{~d} u \\ & 2 u \mathrm{e}^{u}-\int 2 \mathrm{e}^{u} \mathrm{~d} u \\ & 2 u e^{u}-2 e^{u} \\ & 2 \sqrt{x+1} \mathrm{e}^{\sqrt{x+1}}-2 \mathrm{e}^{\sqrt{x+1}}+c \end{aligned}$ | B1(AO1. <br> 1) <br> M1(AO3. <br> 1a) <br> A1(AO2. <br> 4) <br> M1 (AO1. <br> 1a) <br> A1(AO1. <br> 1) <br> A1(AO1. <br> 1) <br> [6] | $\left.\begin{array}{l\|l}\begin{array}{l}\text { Correct } \\ \text { relationship } \\ \text { soi }\end{array} & \\ \begin{array}{l}\text { Convert to } \\ \text { integrand in } \\ \text { terms of } u\end{array} & \text { A0 if du } \\ \text { Fully } \\ \text { correct, } \\ \text { including } \\ \text { du }\end{array} \quad \begin{array}{l}\text { never seen, } \\ \text { but all } \\ \text { remaining } \\ \text { marks } \\ \text { available }\end{array}\right]$Attempt <br> integration <br> by parts$\quad$Condone <br> no + $c$ |  |
|  | b | $x=(\ln y)^{2}-1$ | B1(AO2. <br> 1) <br> [1] | Correct equation in form $x=$ $\mathrm{f}(y)$ |  |


| Question | Answer/Indicative content | Marks |  | Part marks and guidance |
| :---: | :---: | :---: | :---: | :---: |
| C | the equation in (b) gives the area between curve and $y$ axis $y=\mathrm{e}^{4} \Rightarrow x=15, y=\mathrm{e} \Rightarrow x=$ <br> 0 <br> area between curve and $x$ -axis is $\left(8 e^{4}-2 e^{4}\right)-(2 e-2 e)=6 e^{4}$ <br> area of rectangle is $15 e^{4}$ hencereqd area is $15 \mathrm{e}^{4}$ $6 e^{4}=9 e^{4}$ A.G. | B1(AO2. <br> 4) <br> B1(AO2. <br> 1) <br> M1(AO2. <br> 2a) <br> A1(AO2. <br> 4) <br> [4] | Identify geometrical relationship <br> Identify $x$ limits <br> Use $x$ limits in integral from (a) <br> Conclude convincingl y |  |
|  | Total | 11 |  |  |






| Question | Answer/Indicative content | Marks | Part marks and guidance |
| :---: | :---: | :---: | :---: |
|  |  |  | This response gained full credit for a correct solution with sufficient justification seen throughout. The derivative is correct, and there is clear evidence of substitution to find the <br> gradient at $X=\frac{1}{4} \pi$. Had the gradient of -4 just been stated, but with no evidence, then this would have been penalised. The equation of the normal is used to find the intercept on the $y$-axis, and this is used to find the area of the triangle. The integration is also correct and limits are used correctly. There is then clear evidence of at least one log law being used to obtain the correct area under the curve. The two areas are then summed to justify the given answer. |
|  | Total | 10 |  |



