1. Find $\int x \cos 3 x d x$.
2. Find $\int x^{8} \ln (3 x) d x$.
3.

i. Use division to show that $\frac{t^{3}}{t+2} \equiv t^{2}-2 t+4-\frac{8}{t+2}$.
ii. Find $\int_{1}^{2} 6 t^{2} \ln (t+2) \mathrm{d} t$. Give your answer in the form $A+B \ln 3+C \ln 4$.
4.

Find the exact value of $\int_{1}^{8} \frac{1}{\sqrt[3]{x}} \ln x \mathrm{~d} x$, giving your answer in the form $A \ln 2+B$, where A and B are constants to be found.
5.

Find $\int(2 x+1) \ln x \mathrm{~d} x$.
6.

$$
\int_{0}^{1} 16 x \mathrm{e}^{4 x} \mathrm{~d} x=3 \mathrm{e}^{4}+1 .
$$

Mark scheme

	Answer/Indicative content	Marks	Part marks and guidance	
1	$\begin{aligned} & u=x \operatorname{and} d v=\cos 3 x \\ & x \times \frac{1}{3} \sin 3 x-\int \frac{1}{3} \sin 3 x \mathrm{~d} x \\ & \frac{x}{3} \sin 3 x+\frac{1}{9} \cos 3 x[+\mathrm{c}] \end{aligned}$	M1 A2 A1	integration by parts as far as $f(x) \pm \int g(x) d x$ A1 for $x \times k \sin 3 x-\int k \sin 3 x d x, \quad k \neq \frac{1}{3}$ oro $\frac{1}{3}\left(\frac{1}{3} \cos 3 x\right)_{\text {or } \ldots \ldots}--\frac{1}{9} \cos 3 x$ Examiner's Comments The vast majority recognised this question as one suitable for integration by parts, the main errors arising from the integrations of $\cos 3 x$ and $\sin 3 x$. Provided the method of integrating by parts was fully understood, some credit was given to candidates who used a wrong sign or 3 instead of $\frac{1}{3} n$ the integrals. Candidates were expected to simplify $\frac{1}{3}: \frac{1}{3} \cos 3 x$) and - $\frac{1}{9}$ $\frac{1}{9}$ zos $3 x$ in their answers but, needless to say, they were not expected to multiply their result by 9 to make it look 'better'.	Check if labelled $v, \mathrm{~d} u$ k may be negative
	Total	4		
2	$\begin{aligned} & u=\ln 3 x \text { and } \mathrm{d} v \text { or } \frac{\mathrm{d} v}{\mathrm{~d} x}=x^{8} \\ & \frac{\mathrm{~d}}{\mathrm{~d} x}(\ln 3 x)=\frac{1}{x} \text { or } \frac{3}{3 x} \\ & \frac{x^{9}}{9} \ln 3 x-\int \frac{x^{9}}{9} \text { their } \frac{\mathrm{d} u}{\mathrm{~d} x}(\mathrm{~d} x) \text { FT } \end{aligned}$	M1 B1 JA1	integ by parts as far as $\mathrm{f}(x)+/-\int g(x)(\mathrm{d} x)$ stated or clearly used i.e. correct understanding of 'by parts'...	If difficult to assess, x^{8} must be integrated, so look for term in x^{9} ..even if $\ln (3 x)$ incorrectly differentiated

Indication that $\int k x^{8} \mathrm{~d} x$ is required
$\frac{x^{9}}{9} \ln 3 x-\frac{x^{9}}{81}$ or $\frac{1}{9} x^{9}\left(\ln 3 x-\frac{1}{9}\right)$ ISW (+c) cao

If candidate manipulates $\ln (3 x)$ first of all
$\ln (3 x)=\ln 3+\ln x$
$u=\ln x$ and $d v=x^{b}$
$\frac{x^{9}}{9} \ln x-\int \frac{x^{9}}{9} \cdot \frac{1}{x}(\mathrm{~d} x)$ or better
$\frac{x^{9}}{9} \ln x-\frac{x^{9}}{81}$

Their $\int x^{8} \ln x \mathrm{~d} x+\frac{x^{9}}{9} \ln 3$ (+c) FT ISW
i.e. before integrating, product of terms must be taken

A1

B1

M1

A1

A1

JA1
$\frac{1}{9} \frac{x^{9}}{9}$ to be simplif to $\frac{x^{9}}{81} ; \frac{3 x^{9}}{243}$ satis

In order to find $\int x^{8} \ln x d x$

Examiner's Comments

This was a relatively straightforward question but two specific errors
occurred. The first could have been forecast: the differentiation of $\ln (3 x)$ as 1
$3 x$: the other, perhaps not so predictable, involved the integration (at the second stage) of $\frac{x^{9}}{9} \cdot \frac{1}{x}$ correct simplification at that stage was of ten followed by the incorrect result of $\frac{1}{72} x^{9}$. However, it can be said that the technique of 'integration by parts' was generally known.

The product may already have been indicated on the previous line

If, however, $\ln (3 x)$ is said to be $\ln 3 \cdot \ln x$, then B0 followed by possible M1 A1

A1 in line with alternative solution on

