1.

i. Use algebraic division to express $\frac{x^{3}-2 x^{2}-4 x+13}{x^{2}-x-6}$ in the form

$$
A x+B+\frac{C x+D}{x^{2}-x-6}, \text { where } A, B, C \text { and } D \text { are constants. }
$$

ii. Hence find $\int_{4}^{6} \frac{x^{3}-2 x^{2}-4 x+13}{x^{2}-x-6} \mathrm{~d} x$, giving your answer in the form $a+\ln b$.
2.

Express $\frac{2+x^{2}}{(1+2 x)(1-x)^{2}}$ in partial fractions and hence show that
$\int_{0}^{\frac{1}{4}} \frac{2+x^{2}}{(1+2 x)(1-x)^{2}} \mathrm{~d} x=\frac{1}{2} \ln \frac{3}{2}+\frac{1}{3}$.
3.
i. Express $\frac{x+8}{x(x+2)}$ in partial fractions.
ii. By first using division, express $\frac{7 x^{2}+16 x+16}{x(x+2)}$ in the form $P+\frac{Q}{x}+\frac{R}{x+2}$.

A curve has parametric equations $x=\frac{2 t}{1-t}, y=3 t+\frac{4}{t}$.
iii. Show that the cartesian equation of the curve is $y=\frac{7 x^{2}+16 x+16}{x(x+2)}$.
iv. Find the area of the region bounded by the curve, the x-axis and the lines $x=1$ and x $=2$. Give your answer in the form $L+M \ln 2+N \ln 3$.

Mark scheme

Question		Answer/Indicative content	Marks M1	Part marks and guidance	
1	i	Clear start to algebraic division (Quotient) $=x-1$ (Remainder) $=x+7$ Final answer: $x-1+\frac{x+7}{x^{2}-x-6}$	M1 A1 A1 1	at least as far as x term in quot \& subseq mult back final answer in correct form This must be shown in part (i) or, if not, then implied in part (ii) If no long division shown but only comparison of coefficients or otherwise, SR M0 B1 B1 B1 Examiner's Comments This question commenced with "Use algebraic division....." and those candidates who did not follow this instruction were penalised. In general, the division was performed well and the positions of the quotient and remainder were rarely mixed up in the final expression.	\& attempt at subtraction Accept $A=1, B=-1, C=$ $1, D=7$
	ii	Convert their $\frac{C x+D}{x^{2}-x-6}$ to Partial Fracts $\frac{x+7}{x^{2}-x-6}=\frac{2}{x-3}-\frac{1}{x+2}$ Their \& \#x2026; $\begin{aligned} & \int A x+B \mathrm{~d} x=\frac{1}{2} A x^{2}+B x \text { or } \frac{(A x+B)^{2}}{2 A} \\ & \int \frac{E}{x-3}+\frac{F}{x+2} \mathrm{~d} x=E \ln (x-3)+F \ln (x+2) \end{aligned}$ Using limits in a correct manner	A1A1 B1 ft B1 ft M1	Correct fraction converted to correct PFs Tolerate some wrong signs provided intention clear	

	ii	$8+\ln \frac{27}{4}\left(8+\ln \frac{54}{8}\right) \quad$ isw	A1	Answer required in the form a $+\ln b$, so giving only a decimalised form is awarded AO Examiner's Comments The word "Hence" was used here and candidates were expected to use their expression from part (i) and evaluate the integral from that. The use of partial fractions was necessary but was applied by only a relatively small number of candidates.	
		Total	11		
2		$\frac{A}{1+2 x}+\frac{B}{1-x}+\frac{C}{(1-x)^{2}}$ may be seen in later work $\begin{aligned} & 2+x^{2} \equiv A(1-x)^{2}+B(1+2 x)(1-x)+C(1+2 x) \\ & A=1, B=0 \text { and } C=1 \text { www } \\ & \left.\int \frac{1}{1+2 x}+\frac{1}{(1-x)^{2}}\right) d x= \\ & F(x)=1 / 2 \ln (1+2 x)+(1-x)^{-1} \\ & \text { ann(1+2x)+b(1-x)-1} \\ & \text { their } \frac{1}{2} \ln \left(\frac{3}{2}\right)+\frac{4}{3}-\left(\frac{1}{2} \ln 1+1\right) \end{aligned}$ $\frac{1}{2} \ln \left(\frac{3}{2}\right)+\frac{4}{3}-0-1$	B1 M1 A1A1A1 M1* A1 M1dep*	or $\frac{A}{1+2 x}+\frac{B x+C}{(1-x)^{2}}$ may be seen later in later work $\text { or } A(1-x)^{2}+(B x+G)(1+2 x)$ a and b are non-zero constants and completion to given result www Examiner's Comments Most recognised the correct form of partial fractions and successfully cleared the fractions. Although there were many fully correct solutions to this part of the questions, numerical slips such as $3 C=$ 3 so $C=3$ and	$\frac{1}{1+2 x_{\text {seen }}}$ allow only sign errors, not algebraic errors ignore extra terms $\text { NB } \frac{1}{2} \ln \left(\frac{3}{2}\right)+\frac{1}{3}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& \begin{tabular}{l}
\[
\frac{9}{4}=\frac{9}{4} A{ }_{\text {so } A=9 \text { were }}
\] \\
surprisingly common. The integration was often well done, although - \((1-x)^{-1}\) was quite common, often leading to fudging of the subsequent arithmetic. As with 8(i), candidates are reminded of the need to show sufficient detail of the solution when working towards a given answer.
\end{tabular} \& \\
\hline \& \& Total \& 9 \& \& \\
\hline 3 \& i \& \[
\frac{A}{x}+\frac{B}{x+2}
\]
\[
x+8=A(x+2)+B x \text { soi }
\]
\[
A=4 \text { and } B=-3
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
allow one sign error \\
Examiner's Comments \\
Most recognised the correct form of partial fractions and successfully cleared the fractions to produce a fully correct solution.
\end{tabular} \& \begin{tabular}{l}
award if only implied by answer \\
clearing fractions successfully \\
if M0, B1 for each value www
\end{tabular} \\
\hline \& ii

ii \& quotient (P) is 7

\[
2 x+16 seen

\] \& B1 \& | if $\mathrm{BO}, \mathrm{B} 1$ for $Q=8$ and B 1 for $R=-6 \mathrm{www}$ |
| :--- |
| Examiner's Comments |
| Most candidates used long division and successfully found the quotient and the remainder. Many then used their answer to part (i) to produce a correct solution. A variety of other approaches were also successful, but a significant minority of those who equated coefficients went astray in the algebra. |
| A small number of candidates tried to divide by x and $\mathrm{x}+2$ | \& eg as remainder or in division chunking

\hline
\end{tabular}

(

					RHS of given equation and completion with at least two correct, constructive intermediate steps to $y=3 t+\frac{4}{t}$
	iv	$\begin{aligned} & \int \text { their }\left(P+\frac{Q}{x}+\frac{R}{x+2}\right)[d x] \\ & \mathrm{F}[x]=7 x+8 \ln x-6 \ln (x+2) \\ & \mathrm{F}[2]-\mathrm{F}[1] \\ & 7-4 \ln 2+6 \ln 3 \end{aligned}$	M1* A1ft M1dep*	where P, Q and R are constants obtained in (ii) allow recovery from omission of brackets in subsequent working Examiner's Comments There were many excellent responses to this part of the question. Most candidates spotted the link with part (ii) and went on to earn three or four marks. Those who started from scratch were almost never successful.	allow omission of $\mathrm{d} x$ if MO, SC1 for $P x+Q n x+R \ln (x+2)$ where constants are unspecified or arbitrary
		Total	14		

