1. The diagram shows part of the curve $y=x^{2}$ for $0 \leq x \leq p$, where p is a constant.

The area A of the region enclosed by the curve, the x-axis and the line $x=p$ is given approximately by the sum S of the areas of n rectangles, each of width h, where h is small and $n h=p$. The first three such rectangles are shown in the diagram.
(a) Find an expression for S in terms of n and h.
(b) Use the identity $\sum_{r=1}^{n} r^{2} \equiv \frac{1}{6} n(n+1)(2 n+1)$ to show that $S=\frac{1}{6} p(p+h)(2 p+h)$.
(c) Show how to use this result to find A in terms of p.

Mark scheme

Question		Answer/Indicative content	$\begin{gathered} \text { Marks } \\ \hline \\ \text { B1 (AO1.1a) } \\ \text { B1 (AO1.1) } \\ {[2]} \end{gathered}$	Guidance	
1	a	Heights are $h^{2},(2 h)^{2},(3 h)^{2}$ etc $\mathrm{S}=h \times h^{2}+h \times(2 h)^{2}+h \times(3 h)^{2}+\ldots \ldots+h \times(n h)^{2}$		soi $\begin{aligned} & \text { or } h^{3}\left(1^{2}+2^{2}+\right. \\ & \left.3^{2}+\ldots .+n^{2}\right) \end{aligned}$	$h^{3}=\sum_{r=1}^{n} r^{2}$
	b	$\begin{aligned} & S=h^{3} \sum_{r=1}^{n} r^{2} \\ & =\frac{h^{3}}{6} n(n+1)(2 n+1) \\ & =\frac{1}{6} n h(n h+h)(2 n h+h) \\ & =\frac{1}{6} p(p+h)(2 p+h) \text { AG } \end{aligned}$	M1 (AO3.1a) A1 (AO2.1) A1 (AO1.1) [3]		
		$\begin{aligned} & A=\lim _{h \rightarrow 0} S=\frac{1}{6} p \times p \times 2 p \\ & =\frac{p^{3}}{3} \end{aligned}$	M1 (AO2.5) A1 (AO2.2a) [2]	Correctly expressed limit statement Answer without working: MOAO	
		Total	7		

