1. Solve the equations
i. $\quad 3^{n}=1$,
ii. $\quad t^{3}=64$,
iii. $\quad\left(8 p^{6}\right)^{\frac{1}{3}}=8$.
2. Express each of the following in the form $a \sqrt{5}$, where a is an integer.
i. $4 \sqrt{15} \times \sqrt{3}$
ii. $\frac{20}{\sqrt{5}}$
iii. $5^{\frac{3}{2}}$
3. Express each of the following in the form 5^{k}.
i. $\quad 25^{4}$
ii. $\frac{1}{\sqrt[4]{5}}$
iii. $\quad(5 \sqrt{5})^{3}$
4.

Express $\frac{8}{\sqrt{3}-1}$ in the form $a \sqrt{3}+b$, where a and b are integers.
5. Express the following in the form 2^{p}.
i. $\quad\left(2^{5} \div 2^{7}\right)^{3}$
ii. $\quad 5 \times 4^{\frac{2}{3}}+3 \times 16^{\frac{1}{3}}$
6.

Express $\frac{3+\sqrt{20}}{3+\sqrt{5}}$ in the form $a+b \sqrt{5}$.
7. Simplify fully.
(a) $\sqrt{a^{3}} \times \sqrt{16 a}$.
(b) $\left(4 b^{6}\right)^{\frac{5}{2}}$
8. Simplify
(a) $\frac{(3 x)^{3} \times 2 x^{-1}}{9 x^{2}}$,
(b) $\left(49 x^{-4}\right)^{-\frac{1}{2}}$.
9. In this question you must show detailed reasoning.

Express each of the following in the form $a+b \sqrt{2}$, where a and b are integers.
(a) $\sqrt{3}(\sqrt{12}+\sqrt{54})$
(b) $\frac{6}{2+\sqrt{2}}$
10.

Express $\frac{2+\sqrt{7}}{\sqrt{7}-2}$ in the form $a+b \sqrt{7}$, where a and b are rational numbers.
11. In this question you must show detailed reasoning.
(a) Express $3^{\frac{7}{2}}$ in the form $a \sqrt{b}$, where a is an integer and b is a prime number.
(b) Express $\frac{\sqrt{2}}{1-\sqrt{2}}$ in the form $c+d \sqrt{e}$, where c and d are integers and e is a prime number.

Mark scheme

Question		Answer/Indicative content	Marks	Part marks and guidance	
1	i	$n=0$	B1	Allow 3^{0} Examiner's Comments Only a tiny number of candidates failed to secure the mark for this simple recall of index notation; $\frac{\mathbf{1}}{3}$ and 1 were occasionally seen.	
	ii	$\frac{1}{t^{3}}=64\left(\text { or } 4^{3}\right)$ $t=\frac{1}{4}$	M1 A1	or $t^{3}=\frac{1}{64}$ or $64 \mathrm{t}^{3}=1$ or $\left(\frac{1}{t}\right)^{3}=64$ 4^{-1} is $\mathbf{A 0} t= \pm \frac{1}{4}$ is $\mathbf{A 0}$ Examiner's Comments Most candidates knew how to deal with the negative index and rewrote the equation as $\frac{1}{t^{3}}=64$ equivalent. Thereafter, however, a significant number could not proceed further, with -4 being a common wrong answer.	Allow embedded 4^{-1} www alone implies M1 AO
	iii	$2 p^{2}=8$ $p=2$ or $p=-2$	M1 A1 A1	or $8 p^{6}=8^{3}$. Allow $2 p^{\frac{6}{3}}=8$ for M1 Www www	If not 512 , evidence of $8 \times 8 \times 8$ needed. SC Spotted B1 for 2, B1 for -2 , B1 for justifying exactly 2 solutions $\mathrm{SC} 8 p^{2}=8, p= \pm 1 \mathrm{~B} 1$

				Examiner's Comments Although a large majority of candidates realised the need to find a cube root, many applied this only to the p^{6} term and not to the 8 . Those that were successful often omitted the negative solution thus surrendering the final mark.	
		Total	6		
2	i	$4 \sqrt{45}$ $=12 \sqrt{5}$	M1 A1	or $4 \sqrt{5} \sqrt{3} \times \sqrt{3}$ (not just $4 \sqrt{5 \times 3} \times \sqrt{3}$) or $\sqrt{720}$ or $\sqrt{240} \times \sqrt{3}$ or better Correctly simplified answer Examiner's Comments Most candidates were successful with this easy starter, but a significant minority found it quite challenging. Most earned at least a method mark for correct surd manipulation of some kind, but the accuracy was more of a problem, with some arithmetic errors and also conceptual ones such as $4 \times 3 \sqrt{5}=7 \sqrt{5}$	For method mark, makes a correct start to manipulate the expression i.e. at least combines two parts correctly or splits one part correctly
	ii	$\frac{20 \sqrt{5}}{5}=4 \sqrt{5}$	B1	cao, do not allow unsimplified, do not allow if clearly from wrong working Examiner's Comments Around 85% of candidates were successful in rationalising the denominator. Where no credit was earned, this was usually due to a lack of understanding rather than arithmetical error with a significant minority appearing not to know how to rationalise the given expression. Simply rewriting it as $20(\sqrt{5})^{-1}$ was quite common.	
	iii	$5 \sqrt{5}$	B1	cao www, do not allow unsimplified, do not allow if clearly from wrong working	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& \begin{tabular}{l}
Examiner's Comments \\
This was generally less successful than parts (i) and (ii), with just under three-quarters of candidates earning the mark. Many of those who did not give the answer in the required form did at least understand the notation as
\[
(\sqrt{5})^{3} \text { was often seen, but then simplified to } 3 \sqrt{5}
\]
\end{tabular} \& \\
\hline \& \& Total \& 4 \& \& \\
\hline 3 \& i \& \(5^{8}\) \& B1 \& \begin{tabular}{l}
cao \\
Examiner's Comments \\
Almost all candidates secured this easy mark, but the error of \(\left(5^{2}\right)^{4}=5^{6}\) was quite common.
\end{tabular} \& \\
\hline \& ii \& \[
5^{-\frac{1}{4}}
\] \& M1

A1 \& | Fourth root $\equiv \frac{1}{4}$ soi |
| :--- |
| cao www |
| Examiner's Comments |
| Again, most candidates were able to gain both marks dealing with both the fractional and negative elements of the index. | \&

\hline \& iii \& $$
5^{\frac{9}{2}}
$$ \& M1

A1 \& | $\left(5^{\frac{3}{2}}\right)^{3}$ or $5^{3} \times 5^{\frac{3}{2}}$ or other correct product of two simplified powers of 5 |
| :--- |
| oe cao www |
| Examiner's Comments |
| This part of the question proved rather more demanding with a minority of | \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& candidates securing both marks. Those who recognised that $\sqrt{5}=5^{\frac{1}{2}}$ were usually able to go on and complete the question successfully; those who tried to multiply out were less successful. \&

\hline \& \& Total \& 5 \& \&

\hline 4 \& \& $$
\frac{8}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}
$$
$$
\begin{aligned}
& \frac{8 \sqrt{3}+8}{3-1} \\
& 4 \sqrt{3}+4
\end{aligned}
$$ \& M1

A1

A1

A1 \& \begin{tabular}{l}
Multiply top and bottom by $\sqrt{3}+1$ or $-\sqrt{3}-1$ evidence of multiplying out needed

Either numerator or denominator correct

Final answer cao

Examiner's Comments

Most candidates recognised the need to rationalise the denominator and did so efficiently and accurately, with many candidates securing all three marks. Errors were sometimes seen both in evaluating the numerator and the denominator, and occasionally in performing the final division

 \&

Alternative:

M1 Correct method to solve

simultaneous equations formed from equating expression to $a \sqrt{3}+b$ A1 Either a or b correct

A1 Both correct
\end{tabular}

\hline \& \& Total \& 3 \& \&

\hline 5 \& i \& $$
\left(2^{-2}\right)^{3} \text { or } 2^{15} \div 2^{21}
$$

$$
2^{-6}
$$ \& B1

B1 \& | Valid attempt to simplify |
| :--- |
| Correct answer. Accept $p=-6$. | \& Correct use of either index law

$$
\left(\frac{1}{2}\right)^{6} \text { is } \mathrm{B} 1
$$

\hline
\end{tabular}

					Examiner's Comments This simple index question was very well done, with around 90% securing both marks.
	ii ${ }^{\text {ii }}$ i ${ }^{\text {ii }}$	$\begin{aligned} & 5 \times\left(2^{2}\right)^{\frac{2}{3}}+3 \times\left(2^{4}\right)^{\frac{1}{3}} \\ & =5 \times 2^{\frac{4}{3}}+3 \times 2^{\frac{4}{3}} \text { or } 10 \times 2^{\frac{1}{3}}+6 \times 2^{\frac{1}{3}} \end{aligned}$ $=8 \times 2^{\frac{4}{3}}$ $=2^{\frac{13}{3}}$	M1	Attempts to express both terms or a combined term as a power of 2 Correctly obtains $2^{\frac{4}{3}} 2^{\frac{1}{3}}{ }^{\text {or er either term }}$	e.g. Both $4=2^{2}$ and $16=2^{4}$ soi If MO Examiner's Comments Although there were a significant number of excellent solutions, this question proved much more demanding than expected with less than a third of candidates securing all three marks. Many reached $5 \times 2^{\frac{4}{3}}+3 \times 2^{\frac{4}{3}}$ but then went no further, or even "simplified" this to $10^{\frac{4}{3}}+6^{\frac{4}{3}}$. Many of those who did obtain $8 \times 2^{\overline{3}^{3}}$ appeared not to realise 8 was a power or 2 . Some of those who did then made errors adding the powers, either through incorrect addition or multiplying so that $5 \times 2^{3} \times 2^{\frac{4}{3}}=2^{4}$
		Total	5		

| | | | | first step, multiplying numerator and denominator by $1+\sqrt{2}$
 made a subsequent error. Some candidates gave the correct answer with
 no working or with incorrect working. These scored no marks. |
| :--- | :--- | :--- | :---: | :--- | :--- |
| | | Total | 5 | |

