1. Solve the equations

i.
$$3^n = 1$$
,

ii.
$$t^{-3} = 64$$
,

iii.
$$(8p^6)^{\frac{1}{3}} = 8$$
.

2. Express each of the following in the form $a\sqrt{5}$, where a is an integer.

$$4\sqrt{15} \times \sqrt{3}$$

ii.
$$\frac{20}{\sqrt{5}}$$

iii.
$$5^{\frac{3}{2}}$$

3. Express each of the following in the form 5^k .

ii.
$$\frac{1}{\sqrt[4]{5}}$$

© OCR 2017. Page 1 of 15

[1]

[2]

[3]

[2]

[1]

[1]

ניו

[1]

[1

[2]

[2]

4.	8		
	Express $\sqrt{3} - 1$ in the form	$a\sqrt{3} + b$, where	a and b are integers.

[3]

5. Express the following in the form 2^{p} .

i.
$$(2^5 \div 2^7)^3$$

[2]

ii.
$$5 \times 4^{\frac{2}{3}} + 3 \times 16^{\frac{1}{3}}$$

[3]

6.
$$\frac{3+\sqrt{20}}{3+\sqrt{5}}$$
 in the form $a+b\sqrt{5}$.

[4]

7. Simplify fully.

(a)
$$\sqrt{a^3} \times \sqrt{16a}$$
.

[2]

(b)
$$(4b^6)^{\frac{5}{2}}$$

[2]

8.

Simplify
(a)
$$\frac{(3x)^3 \times 2x^{-1}}{9x^2}$$
,

[2]

(b)
$$(49x^{-4})^{-\frac{1}{2}}$$
.

[2]

9. In this question you must show detailed reasoning.

Express each of the following in the form $a+b\sqrt{2}$, where a and b are integers.

(a)
$$\sqrt{3}(\sqrt{12} + \sqrt{54})$$

[3]

(b)
$$\frac{6}{2+\sqrt{2}}$$

[3]

10.

$$\frac{2+\sqrt{7}}{\sqrt{7}-2} \\ \text{Express } \frac{a+b\sqrt{7}}{\sqrt{7}-2} \\ \text{in the form } a+b\sqrt{7}, \\ \text{where } a \\ \text{and } b \\ \text{are rational numbers.}$$

[3]

11. In this question you must show detailed reasoning.

[2]

(a) Express
$$3^{\frac{7}{2}}$$
 in the form $a\sqrt{b}$, where a is an integer and b is a prime number.

[3]

(b) Express
$$1-\sqrt{2}$$
 in the form $c+d\sqrt{e}$, where c and d are integers and e is a prime number.

END OF QUESTION paper

Mark scheme

Qu	estic	n	Answer/Indicative content	Marks	Part marks and guidance	
1		i	<i>n</i> = 0	B1	Allow 3° Examiner's Comments Only a tiny number of candidates failed to secure the mark for this simple recall of index notation; $\frac{1}{3}$ and 1 were occasionally seen.	
		ii	$\frac{1}{t^3} = 64 \text{ (or } 4^3)$	M1	or $t^3 = \frac{1}{64}$ or $64t^3 = 1$ or $\left(\frac{1}{t}\right)^3 = 64$	Allow embedded
		ii	$t = \frac{1}{4}$	A1	4^{-1} is $\mathbf{A0}$ $t=\pm \frac{1}{4}$ is $\mathbf{A0}$ Examiner's Comments Most candidates knew how to deal with the negative index and rewrote the $\frac{1}{t^3}=64$ equation as $t=0$ or equivalent. Thereafter, however, a significant number could not proceed further, with -4 being a common wrong answer.	4 ⁻¹ www alone implies M1 A0
		iii	$2p^2 = 8$	M1	or $8p^6 = 8^3$. Allow $2p^{\frac{6}{3}} = 8$ for M1	If not 512, evidence of $8 \times 8 \times 8$ needed.
		iii	$\rho = 2$	A1	www	SC Spotted B1 for 2, B1 for -2, B1 for justifying exactly 2 solutions
		iii	or $p = -2$	A1	www	SC $8\rho^2 = 8$, $\rho = \pm 1$ B1

© OCR 2017. Page 5 of 15

				Examiner's Comments Although a large majority of candidates realised the need to find a cube root, many applied this only to the p^g term and not to the 8. Those that were successful often omitted the negative solution thus surrendering the final mark.	
		Total	6		
2	i	$4\sqrt{45}$	M1	or $4\sqrt{5}\sqrt{3} \times \sqrt{3}$ (not just $4\sqrt{5 \times 3} \times \sqrt{3}$) or $\sqrt{720}$ or $\sqrt{240} \times \sqrt{3}$ or better	For method mark, makes a correct start to manipulate the expression i.e. at least combines two parts correctly or splits one part correctly
	i	$=12\sqrt{5}$	A1	Correctly simplified answer	
	ii	$\frac{20\sqrt{5}}{5} = 4\sqrt{5}$	B1	cao, do not allow unsimplified, do not allow if clearly from wrong working	
	iii	5√5	B1	cao www, do not allow unsimplified, do not allow if clearly from wrong working	

© OCR 2017. Page 6 of 15

				Examiner's Comments	
				This was generally less successful than parts (i) and (ii), with just under	
				three-quarters of candidates earning the mark. Many of those who did not	
				give the answer in the required form did at least understand the notation as	
				$\left(\sqrt{5}\right)^3$ was often seen, but then simplified to $3\sqrt{5}$.	
				/ was often seen, but then simplified to 2 v s.	
		Total	4		
				cao	
3	i	5 ⁸	B1	Examiner's Comments	
				Almost all candidates secured this easy mark, but the error of $(5^2)^4 = 5^6$ was	
				quite common.	
		_1		Fourth root $\equiv \frac{1}{1}$ soi	
	II	$5^{-\frac{1}{4}}$	M1	4	
				cao www	
				ado mm	
	ii		A1	Examiner's Comments	
				Again, most candidates were able to gain both marks dealing with both the	
				fractional and negative elements of the index.	
				3	
		9		$(5^{\frac{3}{2}})^3$ or $5^3 \times 5^{\frac{3}{2}}$ or other correct product of two simplified powers of 5	
	iii	$5^{\frac{9}{2}}$	M1	or other correct product of	
				two simplified powers of 3	
				oe cao www	
	liii		A1	Everyings's Comments	
	"		AI	Examiner's Comments	
				This part of the question proved rather more demanding with a minority of	

© OCR 2017. Page 7 of 15

				candidates securing both marks. Those who recognised that $\sqrt{5} = 5^{\frac{1}{2}} \text{were usually able to go on and complete the question successfully; those who tried to multiply out were less successful.}$	
		Total	5		
4		$\frac{8}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$ $\frac{8\sqrt{3}+8}{3-1}$ $4\sqrt{3}+4$	M1	Multiply top and bottom by $\sqrt{3}+1$ or $-\sqrt{3}-1$ evidence of multiplying out needed	Alternative: M1 Correct method to solve
			A1	Either numerator or denominator correct	simultaneous equations formed from equating expression to $a\sqrt{3}+b$ A1 Either a or b correct
			A1	Final answer cao Examiner's Comments Most candidates recognised the need to rationalise the denominator and did so efficiently and accurately, with many candidates securing all three marks. Errors were sometimes seen both in evaluating the numerator and the denominator, and occasionally in performing the final division	A1 Both correct
		Total	3		
5	i	$(2^{-2})^3$ or $2^{15} \div 2^{21}$	B1	Valid attempt to simplify	Correct use of either index law
	i	2-6	B1	Correct answer. Accept $p = -6$.	$\left(\frac{1}{2}\right)^6_{\infty \text{ is B1}}$

© OCR 2017. Page 8 of 15

				Examiner's Comments This simple index question was very well done, with around 90% securing both marks.
ii	$5 \times \left(2^{2}\right)^{\frac{2}{3}} + 3 \times \left(2^{4}\right)^{\frac{1}{3}}$ $= 5 \times 2^{\frac{4}{3}} + 3 \times 2^{\frac{4}{3}} or 10 \times 2^{\frac{1}{3}} + 6 \times 2^{\frac{1}{3}}$	M1	Attempts to express both terms or a combined term as a power of 2	e.g. Both 4 = 2 ² and 16 = 2 ⁴ soi
ii	$=5\times2^{\frac{4}{3}}+3\times2^{\frac{4}{3}}or10\times2^{\frac{1}{3}}+6\times2^{\frac{1}{3}}$	B1	Correctly obtains $2^{rac{4}{3}}$ or $2^{rac{1}{3}}$ for either term	If MO
ii	$= 8 \times 2^{\frac{4}{3}}$ $= 2^{\frac{13}{3}}$	A 1	Correct final answer	Although there were a significant number of excellent solutions, this question proved much more demanding than expected with less than a third of candidates securing all three marks. Many reached
"	= 2 3	731	Octobe mad allower	
	Total	5		

© OCR 2017. Page 9 of 15

6		$\frac{3 + \sqrt{20}}{3 + \sqrt{5}} \times \frac{3 - \sqrt{5}}{3 - \sqrt{5}}$ $-1 + 3\sqrt{5}$	M1 B1	Attempt to rationalise the denominator – must attempt to multiply $\sqrt{20} = 2\sqrt{5} \; \text{soi}$ Either numerator or denominator correct and simplified to no more than two	Alternative: M1 Correct method to solve simultaneous equations formed from equating expression to $a\sqrt{5}+b$
		$\frac{-1+3\sqrt{5}}{9-5}$	A1	terms	B1 $\sqrt{20}=2\sqrt{5}$ soi A1 Either a or b correct A1 Both correct Examiner's Comments
		$-\frac{1}{4} + \frac{3}{4}\sqrt{5}$	A1	Fully correct and fully simplified. Allow $\frac{-1+3\sqrt{5}}{4}$ order reversed etc. Do not ISW if then multiplied by 4 etc.	Most candidates recognised the need to rationalise the denominator and did so efficiently and accurately, with many candidates securing all four marks. The conversion from $\sqrt{20}$ to $2\sqrt{5}$ was usually well done; most errors that occurred were seen when expanding and simplifying the numerator. Some candidates obtained the correct answer but then, seemingly unsatisfied with the fractional values of a and b found, multiplied by 4; this lost the final mark.
		Total	4		
7	а	$\sqrt{16a^4}$ or $4\sqrt{a^4}$ or $a\sqrt{a} \times 4\sqrt{a}$	M1(AO1.1) A1(AO1.1)	Any correct first step	

	b	32 <i>b</i> ¹⁵	B2(AO1.1) (AO1.1)	B1 for 32 and B1 for <i>b</i> ¹⁵
		Total	4	
8	а	$\frac{(3x)^3 \times 2x^{-1}}{9x^2} = \frac{27x^3 \times 2x^{-1}}{9x^2}$ $= \frac{54x^2}{9x^2} = 6$	B1 (AO1.1) B1 (AO1.1)	Correctly expands (3x) ³ as 27x ³
	р	$(49x^{-4})^{-\frac{1}{2}} = \frac{1}{7}x^2$	B1 (AO1.1) B1 (AO1.1) [2]	For $\frac{1}{7}$, independent of power of x For x^2
		Total	4	
9	а	$\sqrt{36} + \sqrt{162} \text{oe}$	M1(AO1.1a)	Attempt to expand

		$\sqrt{6^2} + \sqrt{9^2 \times 2} \text{oe}$ $= 6 + 9\sqrt{2}$	A1(AO1.1) A1(AO1.1) [3]	bracket Obtain 6 Obtain 9√2	Must show sufficient method	
	b	$\frac{6(2-\sqrt{2})}{(2+\sqrt{2})(2-\sqrt{2})} = \frac{12-6\sqrt{2}}{2} = 6-3\sqrt{2}$	M1(AO1.1a) A1(AO1.1) A1(AO1.1)	Multiply numerator and denominator by $2-\sqrt{2}$ Either numerator or denominator correct Fully correct expression	Must be simplified Must show sufficient method	
		Total	6			
10		$\frac{2+\sqrt{7}}{\sqrt{7}-2} \times \frac{\sqrt{7}+2}{\sqrt{7}+2}$	M1	Attempt to rationalise the denominator – must attempt to multiply. (May use $-\sqrt{7}-2$)	Alternative: M1 Correct method to solve simultaneous equations formed from	
		$\frac{11+4\sqrt{7}}{7-4}$	A1	Either numerator or denominator correct and simplified to no more than two terms	equating expression to $\frac{a+b\sqrt{7}}{}$	

		$\frac{11}{3} + \frac{4\sqrt{7}}{3}$	A1 [3]	Fully correct and simplified. $\frac{11+4\sqrt{7}}{3},$ Allow $1000000000000000000000000000000000000$	ly, securing all three marks. It both in evaluating the numerator It the latter e.g. by not squaring the It. A small but noticeable number It beceded to multiply by 3 to give It becomes a small number It is a small street their final
		Total	3		
11	а	$(\sqrt{3})^7$ or $\sqrt{3^7}$ or $3^3 \times \sqrt{3}$ or $3\sqrt{243}$	M1 (AO1.1a)	- -	If this step is not seen, MOAO

	27√3	A1 (AO1.1)	using $\sqrt{\frac{1}{2}}$ or $a=27$, $b=3$ Examiner's Comments Many candidates answered this question correctly. A few made a correct first step, for example $\sqrt{3^7}$, but could not continue correctly. Some candidates gave the correct answer with no working or with incorrect
b	DR $\frac{\sqrt{2}}{1-\sqrt{2}} \times \frac{1+\sqrt{2}}{1+\sqrt{2}}$ $= \frac{\sqrt{2}+2}{1-2} \text{ or } \frac{\sqrt{2}+2}{-1} \text{ or } \frac{\sqrt{2}+2}{1+\sqrt{2}-\sqrt{2}-2}$ $= -2 - \sqrt{2}$ ISW	M1 (AO1.1a) A1 (AO1.1) A1 (AO1.1)	working. These scored no marks. A1 for correct num OR denom or $-2+(-1\sqrt{2})$ or $c=-2$, $d=-1$ and $e=2$ If this step is not seen, M0A0 Allow $-(2+\sqrt{2})$
		[3]	Examiner's Comments Many candidates answered this question correctly. A few made a correct

			first step, multiplying numerator and denominator by $1 + \sqrt{2}$, but made a subsequent error. Some candidates gave the correct answer with no working or with incorrect working. These scored no marks.
	Total	5	

© OCR 2017.