(i)
$$y = \ln\left(\frac{1+\sin 4x}{\cos 4x}\right)$$
, $\frac{dy}{dx} = \frac{4}{\cos 4x}$. [4]

(ii)
$$\int \left(\frac{\cos 2x}{\cos 2x + \sin 2x} + \frac{\sin 2x}{\cos 2x - \sin 2x} \right) dx.$$
 [4]

(a) Differentiate the following with respect to *x*.

(i)
$$\frac{1}{(3x-4)^2}$$
 [1]

$$\lim_{(ii)} \frac{\ln(x+2)}{x}$$
[3]

(b) Find
$$\int e^{(2x+3)} dx$$
 [3]

END OF QUESTION paper

1.

2.

Mark scheme

Question	Answer/Indicative content	Marks	Guid	lance
	$\frac{\cos 4x \times 4\cos 4x - (1 + \sin 4x) \times -4\sin 4x}{\cos^2 4x}$	M1	quotient rule; allow	
	$\frac{4\cos^2 4x + 4\sin^2 4x + 4\sin 4x}{\cos^2 4x}$ oe	A1	sign errors and / or one coefficient error use of chain rule; may be unsimplified	
	$\frac{\cos 4x}{1+\sin 4x} \times their \frac{4(1+\sin 4x)}{\cos^2 4x}$	M1		
	$=\frac{4}{\cos 4x}$ NB AG	A1		
	$\frac{4\cos 4x}{1+\sin 4x} - \frac{-4\sin 4x}{\cos 4x}$	М1		
1 i	$\frac{4\cos 4x \times \cos 4x + 4\sin 4x(1 + \sin 4x)}{(1 + \sin 4x)\cos 4x}$ $eg \frac{4(\cos^2 4x + \sin^2 4x) + 4\sin 4x}{(1 + \sin 4x)\cos 4x}$ $\frac{4}{\cos 4x}$ $alternatively$ $\frac{1}{\sec 4x + \tan 4x} \times (4\sec 4x \tan 4x + 4\sec^2 4x)$	M1	chain rule; allow sign errors and /	or use of
		A1 A1	or one error in coefficient of cos 4 <i>x</i> or sin4 <i>x</i>	product rule with (1+ sin4x) and (cos4x) -1 or $sec4x$
		М1	combine to a single fraction FT <i>their</i> chain rule	$(1 + \sin 4x) \times -1(\cos 4x)^{-2} \times -4\sin 4x$
		М1	any equivalent correct step	$+\frac{4\cos 4x}{\cos 4x}$
	$\frac{4\sec 4x(\tan 4x + \sec 4x)}{\sec 4x + \tan 4x}$	A1		
	4sec4x	A1		

		$\frac{1}{4}\ln\left(\frac{1+\sin 4x}{\cos 4x}\right)+c \text{ oe}$ $eg\frac{1}{4}\ln\left(1+\sin 4x\right)+\frac{1}{4}\ln\sec 4x+c$	A1 [4]	$\frac{1}{NB}$ $\frac{1}{4}$ in (sec $4x$ + $\tan 4x$) + c Examiner's CommentsCandidates who failed to combine the integrand into a single fraction generally made
		Total	8	
2	a	(i) $\frac{-\frac{6}{(3x-4)^3}}{(x+2)^3} \text{ or } -6(3x-4)^{-3} \text{ oe}$ $\frac{x \times \frac{1}{x+2} - \ln(x+2)}{x^2}$ $= \frac{1}{x(x+2)} - \frac{\ln(x+2)}{x^2}$	B1 (AO1.1) [1] M1 (AO1.1a) M1 (AO1.1) A1 (AO1.1) [2]	Allow M1 for denominator and one term in numerator correct oe two– layered fraction or fractions
	b	$\frac{1}{2}\mathbf{e}^{(2x+3)} + c$	B1 (AO1.1a) B1 (AO1.1) B1	B1 for e^{i2x+} 3) B1 for $\frac{1}{2}$

		(AO1.1) [2]	B1 for + c
	Total	7	