1.

(i) Given that $y=\ln \left(\frac{1+\sin 4 x}{\cos 4 x}\right)$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{\cos 4 x}$.
(ii) $\int\left(\frac{\cos 2 x}{\cos 2 x+\sin 2 x}+\frac{\sin 2 x}{\cos 2 x-\sin 2 x}\right) d x$.
2. (a) Differentiate the following with respect to x.
(i) $\frac{1}{(3 x-4)^{2}}$
(ii) $\frac{\ln (x+2)}{x}$
(b) Find $\int \mathrm{e}^{(2 x+3)} \mathrm{d} x$.

Mark scheme

			(AO1.1) [2]	$\mathrm{B1}$ for $+C$	
	Total	7			

