1.

dy

The equation of a curve is $xy^2 = x^2 + 1$. Find \overline{dx} in terms of x and y, and hence find the coordinates of the stationary points on the curve.

[7]

2.

The diagram shows the curve with equation $x^2 + y^3 - 8x - 12y = 4$. At each of the points P and Q the tangent to the curve is parallel to the y-axis. Find the coordinates of P and Q.

[8]

- 3. A curve has equation $(x + y)^2 = xy^2$. Find the gradient of the curve at the point where x = 1.
- Given that $y \sin 2x + \frac{1}{x} + y^2 = 5$, find an expression for $\frac{dy}{dx}$ in terms of x and y.

[5]

5. In this question you must show detailed reasoning.

Find the exact values of the *x*-coordinates of the stationary points of the curve $x^3 + y^3 = 3xy + 35$. [9]

6. In this question you must show detailed reasoning.

A curve has equation

$$x\sin y + \cos 2y = \frac{5}{2}$$

for $x \ge 0$ and $0 \le y < 2\pi$.

Determine the exact coordinates of each point on the curve at which the tangent to the curve is parallel to the *y*-axis.

[9]

7. The equation of a curve is $4\sqrt{y} + x^2y - 8 = 0$. The curve meets the line y = 1 at two points. Find the gradient

[7]

of the curve at each of these points.

8. In this question you must show detailed reasoning.

Show that the curve with equation $x^2 - 4xy + 8y^3 - 4 = 0$ has exactly one stationary point.

[10]

END OF QUESTION paper

© OCR 2017. Page 2 of 12

Mark scheme

Ques	Answer/Indicative content	Marks	Part marks and guidance	
1	For attempt at product rule on xy²	M1	or changing equation to $y^2 = x + x^{-1}$	
	$\frac{\mathrm{d}}{\mathrm{d}x}(y^2) = 2y\frac{\mathrm{d}y}{\mathrm{d}x}$	B1	soi in the differentiating process	
	$\frac{dy}{dx} = \frac{2x - y^2}{2xy}$ or $\frac{1 - x^{-2}}{2y}$	Award <u>B</u> 1 for $(\pm)\frac{1}{2}(x+x^{-1})^{-\frac{1}{2}}(1$		
	Stationary point \rightarrow (their) $\frac{dy}{dx} = 0$ soi	M1		
	$x^2 = 1 \text{ or } y^2 = 2 \text{ or } y^4 = 4$	A1	Ignore any other values	
	$(1,\sqrt{2}), (1,-\sqrt{2})$	A1,A1	Accept 1.41 or $4^{\frac{1}{4}}$ for $\sqrt{2}$ Examiner's Comments The first part was generally answered well and most obtained the correct expression for though a few equated to 0 at an earlier stage (so losing a simple mark). The derivation of $x^2 = 1$ or $y^4 = 4$ was well done but the final easy hurdle of obtaining the two (and only two) pairs of coordinates left much to be desired.	SR. Award A1 only if extra co-ordinates presented with both correct answers
	Total	7		
2	$3y^2 \frac{dy}{dx}$	B1	$2x\frac{\mathrm{d}x}{\mathrm{d}y}$	if B0B0 M0

© OCR 2017.

$2x - 12\frac{\mathrm{d}y}{\mathrm{d}x} - 8$	B1	$3y^2 - 8\frac{\mathrm{d}x}{\mathrm{d}y} - 12$	$\frac{\mathrm{d}y}{\mathrm{SC2 for}} =$
$3y^2 \frac{\mathrm{d}y}{\mathrm{d}x} - 12 \frac{\mathrm{d}y}{\mathrm{d}x} = 8 - 2x \text{ soi}$	M1	$2x\frac{\mathrm{d}x}{\mathrm{d}y} - 8\frac{\mathrm{d}x}{\mathrm{d}y} = -3y^2 + 12$	$\frac{1}{3}(-x^2 + 8x + 12y + 4)^{\frac{-2}{3}} \times (-2x^2 + 8x + 12y + 4)^{\frac{-2}{3}}$
		must be two terms on each side must follow from RHS = 0 This mark may be implied if	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8 - 2x}{3y^2 - 12} \text{oe}$	A1		M1 may be earned for setting correct denominator equal to 0
		is substituted and there is no evidence for an incorrect $\dfrac{\mathrm{d}x}{\mathrm{d}y}$ expression for $\dfrac{\mathrm{d}y}{\mathrm{d}y}$	
their $3y^2 - 12 = 0$	M1*		x ≠ 4 not required
<i>y</i> = (±) 2	A1	A0 if $\frac{\mathrm{d}y}{\mathrm{d}x}$ incorrect	
substitution of their positive y value in original equation	M1dep*		ignore substitution of – 2
x = 10, $x = -2$ and no others cao	A1	A0 if $\frac{dy}{dx}$ incorrect Examiner's Comments Very many candidates showed mastery of implicit differentiation, and an overwhelming majority achieved the first 4 marks on this question. Many went on successfully to	condone omission of formal statement of coordinates (10, 2) and (-2, 2)
	must be two terms on each side and must follow from RHS = 0 $\frac{dy}{dx} = \frac{8-2x}{3y^2-12} \text{ oe}$ their $3y^2-12=0$ $y=(\pm)2$ substitution of their positive y value in original equation	must be two terms on each side and must follow from RHS = 0 $\frac{dy}{dx} = \frac{8-2x}{3y^2-12} \text{ oe}$ their $3y^2-12=0$ $y = (\pm)2$ A1 M1 M1 M1 M1 M1 M1 M1 M1 M1	must be two terms on each side and must follow from RHS = 0 must be two terms on each side and must follow from RHS = 0 This mark may be implied if $ \frac{dy}{dx} = \frac{8 - 2x}{3y^2 - 12} \text{ oe} $ The inverted and there is no evidence for an incorrect $\frac{dx}{dy} = 0$ is substituted and there is no evidence for an incorrect $\frac{dx}{dy} = 0$ their $3y^2 - 12 = 0$ M1 A1 $ \frac{dy}{dx} = d$

			$\frac{\mathrm{d}y}{\mathrm{d}x}$ equal to	
			zero and made no further progress. Surprisingly, solving $3y^2$ – 12 = 0 often led to y = \pm 4.	
	Total	8		
3	LHS is $k(x+y)(1+\frac{\mathrm{d}y}{\mathrm{d}x})$	M1	or $2x + 2y \frac{dy}{dx} + ky + kx \frac{dy}{dx}$ **k is any positive integer	some terms may appear on RHS with signs reversed
	k = 2	A1		if M0 in middle scheme, SC1 for three terms out of four completely correct with $k = 2$
	$2yrac{\mathrm{d}y}{\mathrm{d}x}$ on RHS from differentiating y^2	B1		may appear on LHS with sign reversed
	$y^2 + Kxy \frac{\mathrm{d}y}{\mathrm{d}x}$ on RHS	M1	${\mathcal K}$ is any positive integer	NB $K=2$; may appear on LHS with signs reversed
	obtains a value of y from eg $(1 + y)^2 = 1 \times y^2$ oe	M1	allow even if follows incorrect manipulation	NB <i>y</i> = -0.5
	substitution of $x = 1$ and their y dependent on at least two correct terms seen following differentiation, even if follows subsequent incorrect manipulation	M1	$1 + \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{4} - \frac{\mathrm{d}y}{\mathrm{d}x}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2 - 1 - 0.25}{-1 - 2 + 1}$
				$_{NB} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x + 2y - y^2}{2xy - 2x - 2y}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3}{8}$ oe cao	A1		- 0.375

			Examiner's Comments			
			Very many candidates showed mastery of implicit			
			differentiation, and an overwhelming majority earned the first			
			4 marks on this question. Many went on successfully to			
			score full marks. However, some			
			weaker candidates set			
			equal to zero and made no further progress, or lost the			
			accuracy mark either because their value of y was incorrect			
			or because			
			dy			
			their attempt to make the			
			subject of the formula went astray.			
			A small number of candidates attempted to make y the			
			subject of the equation before differentiating. This was nearly			
			always unsuccessful as the crucial branch of the curve was			
			usually ignored.			
		accary ignored.				
	Total	7				
4	$2y\frac{dy}{dx}$	B1	from differentiation of y ²			
	$\sin 2x \frac{\mathrm{d}y}{\mathrm{d}x} + 2y \cos 2x$	M1	correct use of Product Rule	allow sign error or one incorrect coefficient		
	$\sin 2x \frac{dy}{dx} + 2y \cos 2x$ $\sin 2x \frac{dy}{dx} + 2y \cos 2x - \frac{1}{x^2} + 2y \frac{dy}{dx} = 0$	A1				
	$(\sin 2x + 2y)\frac{dy}{dx} = \frac{1}{x^2} - 2y\cos 2x \text{ oe}$	M1	collection of like terms on separate sides, need not be factorised	$\frac{\mathrm{d}y}{\mathrm{d}x}$ must be two terms in $\frac{\mathrm{d}y}{\mathrm{d}x}$		
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{1 - 2x^2y\cos 2x}{(\sin 2x + 2y)x^2} \text{ oe isw}$	A1	$\operatorname{eg} \left[\frac{\mathrm{d}y}{\mathrm{d}x} = \right] \frac{x^{-2} - 2y \cos 2x}{(\sin 2x + 2y)}$	A0 for eg <i>y</i>		
	$(\sin 2x + 2y)x$		$(\sin 2x + 2y)$	Examiner's Comments		

	Total	5			This question was done very well indeed, with many candidates achieving full marks. A common error was to differentiate the second term as lnx and some candidates made sign or coefficient errors when using the product rule.
5	$3x^{2} + 3y^{2} \frac{dy}{dx}$ $= 3y + 3x \frac{dy}{dx}$	B1(AO1.1) M1(AO3.1a) A1(AO1.1) E1(AO2.1) M1(AO3.1a)	Attempt LHS derivative Attempt product rule on RHS Correct on RHS	Two non-constant terms	
	To find the stationary points let $\frac{dy}{dx} = 0$ $y = x^{2}$ $x^{3} + (x^{2})^{3} = 3x(x^{2}) + 35$ $x^{6} - 2x^{3} - 35 = 0$ Let $\rho = x^{3}$, then $\rho^{2} - 2 \rho - 35 = 0$ $\rho = 7 \text{ or } - 5$ $\Rightarrow x = \sqrt[3]{7} \text{ or } x = -\sqrt[3]{5}$	M1(AO2.1) M1(AO2.1) M1(AO1.1) A1(AO3.2a)	Explicitly set their derivative equal to zero Attempt to solve for their y or their x Substitute to get their	Alternate $x = y^{\frac{1}{2}}$ Alternate $y^3 - 2y^{\frac{3}{2}} - 35 = 0$	

		[9]	polynomial in one variable		
			Transform their disguised quadratic Solve their 3 term quadratic For both correct	A0 for decimal answer	
	Total	9			
6	$\sin y + x \cos y \frac{dy}{dx} - 2 \sin 2y \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{\sin y}{2 \sin 2y - x \cos y}$ $2 \sin 2y - x \cos y = 0$	B1(AO1.1a) M1(AO1.1) A1(AO1.1) M1(AO3.1a) M1(AO3.1a)	Correct derivatives of cosy and - 2sin2y Attempt use of product rule for xsiny Obtain correct derivative		

	1 1					
		$4\sin y \cos y - x\cos y = 0$ $\cos y(4\sin y - x) = 0 \text{ so } \cos y = 0 \text{ or } x = 4\sin y$	A1(AO2.1)	Rearrange and use denominator = 0		
		$\cos y = 0$ gives $\left(\frac{7}{2}, \frac{1}{2}\pi\right)$	M1(AO3.1a)			
		$x = 4\sin y \text{ gives } 4\sin^2 y + \cos 2y = 2.5$	A1(AO3.2a)	Use sin2 <i>y</i> = 2sin <i>y</i> cos <i>y</i> and attempt solution		
		$4\sin^2 y + 1 - 2\sin^2 y = 2.5$				
		$\sin y = \pm \frac{1}{2} \sqrt{3}$	A1(AO2.4)	Obtain $(\frac{7}{2}, \frac{1}{2}\pi)$		
		$\sin y = \frac{1}{2}\sqrt{3} \text{ gives } (2\sqrt{3}, \frac{1}{3}\pi) \text{ and } (2\sqrt{3}, \frac{2}{3}\pi)$	[9]		Including use of correct identity	
		$\sin y = -\frac{1}{2}\sqrt{3}$ gives $x < 0$, so no valid solutions		Substitute x = 4siny into original equation and attempt to solve		
				Obtain one correct solution	Must discount_	
				Obtain both correct roots	$\sin y = -\frac{1}{2}\sqrt{3}$	
		Total	9			
		$Ay^{-\frac{1}{2}} \times \frac{dy}{dx}$		4		
		dx	M1	A is a constant		
7		$Bxy + x^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	M1	Bis a constant		

_		ı	T		
	$4 \times \frac{1}{2} y^{-\frac{1}{2}} \times \frac{dy}{dx} + 2xy + x^2 \frac{dy}{dx} [= 0]$	A1		$\mathbf{NB} \ \frac{-2xy}{x^2 + 2y^{\frac{1}{2}}}$	
	$x = \pm 2$	B1		$x^2 + 2y^{-\frac{1}{2}}$	
	substitution of (<i>their</i> 2, 1) <i>or</i> (<i>their</i> –2, 1) following differentiation	M1	both values		
	$_{\text{at (2, 1)}} m = -\frac{2}{3}$	A1	may follow incorrect	from $4\sqrt{1} + x^2 \times 1 - 8 =$	-
	$_{\text{at }(-2, 1)} m = \frac{2}{3}$	A1	rearrangement		
	Alternatively, marks for differentiation may be awarded as follows	[7]		association	
	$2x\frac{\mathrm{d}x}{\mathrm{d}y}$	B1		between point and gradient may be evidenced by	
	$2x\frac{\mathrm{d}x}{\mathrm{d}y}y + x^2 \times 1$	M1		substitution	
	$2x\frac{dx}{dy}y + x^2 + 2y^{-\frac{1}{2}}[=0]$		use of Product		
	dy	A1	Rule		
			Examiner's Comments		
			As in previous years, this topic is well understood and there were many very good responses to this question. A few		
			slipped up in finding the values of		
			successfully and then rearrange	d to make $\overline{\mathbf{dx}}$ the subject	

inority made a sign error at acy, marks at the end correct x values.
· ·
Deal with at least
one y term correctly
OD 4.2 0.2
OR $4y^2 - 8y^2 + 8y^3 - 4 = 0$
OR $2y^3 - y^2 - 1$
BC OR f(1) = 0
$OR(y-1)(2y^2+y)$

© OCR 2017. Page 11 of 12

	$\Delta = -7 < 0$ so quadratic has no real roots, hence just one stationary point		factorise cubic - any valid method	+ 1) = 0 Allow for dividing by root of their cubic	
	$\Delta = -7 < 0$ so quadratic has no real roots, hence just one stationary point		Correct quadratic quotient Justify one stationary point	Correct working only	
	Total	10			