1.

dy

The equation of a curve is $x y^{2}=x^{2}+1$. Find $\overline{\mathrm{d} x}$ in terms of x and y, and hence find the coordinates of the stationary points on the curve.

The diagram shows the curve with equation $x^{2}+y^{3}-8 x-12 y=4$. At each of the points P and Q the tangent to the curve is parallel to the y-axis. Find the coordinates of P and Q.
3. A curve has equation $(x+y)^{2}=x y^{2}$. Find the gradient of the curve at the point where $x=1$.
4.

Given that $y \sin 2 x+\frac{1}{x}+y^{2}=5$, find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
5. In this question you must show detailed reasoning.

Find the exact values of the x-coordinates of the stationary points of the curve $x^{3}+y^{3}$ $=3 x y+35$.
6. In this question you must show detailed reasoning.

A curve has equation

$$
x \sin y+\cos 2 y=\frac{5}{2}
$$

for $x \geq 0$ and $0 \leq y<2 \pi$.
Determine the exact coordinates of each point on the curve at which the tangent to the curve is parallel to the y-axis.
7. The equation of a curve is $4 \sqrt{y}+x^{2} y-8=0$. The curve meets the line $y=1$ at two points. Find the gradient
of the curve at each of these points.
8. In this question you must show detailed reasoning.

Show that the curve with equation $x^{2}-4 x y+8 y^{3}-4=0$ has exactly one stationary point.

Mark scheme

	Answer/Indicative content	Marks	Part marks and guidance	
1	For attempt at product rule on $x y^{2}$ $\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 x-y^{2}}{2 x y} \text { or } \frac{1-x^{-2}}{2 y} \end{aligned}$ Stationary point \rightarrow (their) $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ soi $x^{2}=1 \text { or } y^{2}=2 \text { or } y^{4}=4$ $(1, \sqrt{2}), \quad(1,-\sqrt{2})$	M1 B1 A1 M1 A1 A1,A1	or changing equation to $y^{2}=x+x^{-1}$ soi in the differentiating process Award $\underline{B} 1$ for $(\pm) \frac{1}{2}\left(x+x^{-1}\right)^{-1 / 2}(1$ Ignore any other values Accept 1.41 or $4^{1 / 4}$ for $\sqrt{2}$ Examiner's Comments The first part was generally answered well and most obtained the correct expression for though a few equated to 0 at an earlier stage (so losing a simple mark). The derivation of $x^{2}=1$ or $y^{4}=4$ was well done but the final easy hurdle of obtaining the two (and only two) pairs of coordinates left much to be desired.	SR. Award A1 only if extra co-ordinates presented with both correct answers
	Total	7		
2	$3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$	B1	$2 x \frac{\mathrm{~d} x}{\mathrm{~d} y}$	if BOBO MO

$\left|\left|\left\lvert\, \begin{array}{l}2 x-12 \frac{\mathrm{~d} y}{\mathrm{~d} x}-8 \\ 3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}-12 \frac{\mathrm{~d} y}{\mathrm{~d} x}=8-2 x \text { soi }\end{array}\right.\right.\right.$
must be two terms on each side and must follow from RHS $=0$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8-2 x}{3 y^{2}-12}$ oe
their $3 y^{2}-12=0$
$y=(\pm) 2$
substitution of their positive y value in original equation
$x=10, x=-2$ and no others cao

B1	$3 y^{2}-8 \frac{\mathrm{~d} x}{\mathrm{~d} y}-12$	$\frac{d y}{\mathrm{sc} 2 \text { for }} \mathrm{dx}=$
M1	$2 x \frac{\mathrm{~d} x}{\mathrm{~d} y}-8 \frac{\mathrm{~d} x}{\mathrm{~d} y}=-3 y^{2}+12$	$\frac{1}{3}\left(-x^{2}+8 x+12 y+4\right)^{\frac{-2}{3}} \times(-2 x$
	must be two terms on each side must follow from RHS $=0$	
	This mark may be implied if	
A1	$\frac{d x}{d y}=0$	M1 may be earned for setting correct denominator equal to 0
	is substituted and there is no evidence for an incorrect $\text { expression for } \frac{\mathrm{d} x}{\mathrm{~d} y}$	
M1*		$x \neq 4$ not required
A1	$\frac{d y}{d x}$	
M1dep*		ignore substitution of -2
	${ }_{\text {A0 if }}^{d x}$ incorrect	
A1	Examiner's Comments	condone omission of formal statement of coordinates $(10,2)$ and $(-2,2)$
	Very many candidates showed mastery of implicit differentiation, and an overwhelming majority achieved the first 4 marks on this question. Many went on successfully to score full marks. However, weaker candidates set	

				Examiner's Comments Very many candidates showed mastery of implicit differentiation, and an overwhelming majority earned the first 4 marks on this question. Many went on successfully to score full marks. However, some $\frac{d y}{\underline{d y}}$ weaker candidates set $d x$ equal to zero and made no further progress, or lost the accuracy mark either because their value of y was incorrect or because dy their attempt to make dxthe subject of the formula went astray. A small number of candidates attempted to make y the subject of the equation before differentiating. This was nearly always unsuccessful as the crucial branch of the curve was usually ignored.	
		Total	7		
4		$\begin{aligned} & 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ & \sin 2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y \cos 2 x \\ & \sin 2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y \cos 2 x-\frac{1}{x^{2}}+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\ & (\sin 2 x+2 y) \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x^{2}}-2 y \cos 2 x \text { oe } \\ & {\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right] \frac{1-2 x^{2} y \cos 2 x}{(\sin 2 x+2 y) x^{2}} \text { oe isw }} \end{aligned}$	B1 M1 A1 M1 A1	from differentiation of y^{2} correct use of Product Rule collection of like terms on separate sides, need not be factorised $\operatorname{eg}\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right] \frac{x^{-2}-2 y \cos 2 x}{(\sin 2 x+2 y)}$	allow sign error or one incorrect coefficient must be two terms in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ AO for eg $y \ldots$ Examiner's Comments

