1. Maria planned a statistical investigation into trees of a certain variety. She wished to test whether there is positive linear correlation between the height of a tree and the circumference of its trunk at the base.
(a) State, with a reason, whether a 1-tail or a 2-tail test is more appropriate.

Maria recorded the height and circumference of a random sample of 10 trees of this variety in a wood near her home. She calculated the product-moment correlation coefficient for her sample and found that the value was 0.642 .
(b) Use the table below to carry out the test at the 2.5% significance level.
(c) Give two reasons why it would not be appropriate to use Maria's results to draw a conclusion about all trees of this variety.

Critical values of Pearson's product-moment correlation coefficient.

1-tail test	5%	2.5%	1%	0.5%
2-tail test	10%	5%	2.5%	1%
n	9	0.5822	0.6664	0.7498
10	0.5494	0.6319	0.7155	0.7646
11	0.5214	0.6021	0.6851	0.7348
12	0.4973	0.5760	0.6581	0.7079

2. The scatter diagram shows data, taken from the pre-release data set (see http:/www.ocr.org.uk/lmages/308727-units-h230-and-h240-large-data-set-Ids-sample-assessment-material.x|sx), for several Local Authorities in one region of the UK in 2011. The diagram shows, for each Local Authority, the number of workers who drove to work, and the number of workers who walked to work.

2011

(a) Four students calculated the value of Pearson's product-moment correlation coefficient for the data in the diagram. Their answers were $0.913,0.124,-0.913$ and -0.124 . One of these values is correct. Without calculation state, with a reason, which is the correct value.
(b) Sanjay makes the following statement.
"The diagram shows that, in any Local Authority, if there are a large number of people who drive to work there will be a large number who walk to work."

Give a reason why this statement is incorrect.
(c) Rosie makes the following statement.
"The diagram must be wrong because it shows good positive correlation. If there are more people driving to work, there will be fewer people walking to work, so there would be negative correlation."

Explain briefly why Rosie's statement is incorrect.

The diagram shows a fairly close relationship between the two variables. One point on (d) the diagram represents a Local Authority where this relationship is less strong than for the others. On the diagram below, label this point A.

(e) Given that the point A represents a metropolitan borough, suggest a reason why the relationship is less strong for this Local Authority than for the others in the region.

The scatter diagram below shows the corresponding data for the same region in 2001.
2001

(f) (i) State a change that has taken place in the metropolitan borough represented by the point A between 2001 and 2011.
(ii) Suggest a possible reason for this change.
3. Christa used Pearson's product-moment correlation coefficient, r, to compare the use of public transport with the use of private vehicles for travel to work in the UK.
(a) Using the pre-release data set for all 348 UK Local Authorities, she considered the following four variables.

Number of employees using public transport	x
Number of employees using private vehicles	y
Proportion of employees using public transport	a
Proportion of employees using private vehicles	b

(i) Explain, in context, why you would expect strong, positive correlation between x and y.
(ii) Explain, in context, what kind of correlation you would expect between a and b.
(b) Christa also considered the data for the 33 London boroughs alone and she generated the following scatter diagram.

London

Proportion using public transport
One London Borough is represented by an outlier in the diagram.
Suggest what effect this outlier is likely to have on the value of r for the 32 London
Boroughs.
(ii) Suggest what effect this outlier is likely to have on the value of r for the whole country.
(iii) What can you deduce about the area of the London Borough represented by the outlier?

Explain your answer.
4. In an experiment involving a bivariate distribution (X, Y) a random sample of 7 pairs of values was obtained and Pearson's product-moment correlation coefficient r was calculated for these values.

The value of r was found to be 0.894 . Use the table below to test, at the 5% significance level,
(a) whether there is positive linear correlation in the population, stating your hypotheses and conclusion clearly.

1-tail test	5%	2.5%	1%	0.5%
2-tail test	10%	5%	2%	1%
n				
1	-	-	-	-
2	-	-	-	-
3	0.9877	0.9969	0.9995	0.9999
4	0.9000	0.9500	0.9800	0.9900
5	0.8054	0.8783	0.9343	0.9587
6	0.7293	0.8114	0.8822	0.9587
7	0.6694	0.7545	0.8329	0.9745
8	0.6215	0.7067	0.7887	0.8343
9	0.5882	0.6664	0.7498	0.7977
10	0.5494	0.6319	0.7155	0.7646

Scatter diagrams for four sets of bivariate data, are shown.

It is given that $r=0.894$ for one of these diagrams.
(b) For each of the other diagrams, state how you can tell that $r \neq 0.894$.
5. Laxmi wishes to test whether there is linear correlation between the mass and the height of adult males.
(a) State, with a reason, whether Laxmi should use a 1-tail or a 2-tail test.

Laxmi chooses a random sample of 40 adult males and calculates Pearson's product-moment correlation coefficient, r. She finds that $r=0.2705$.
(b) Use the table below to carry out the test at the 5\% significance level.

Critical values of Pearson's product-moment correlation coefficient.

	1-tail test	5%	2.5%	1%	0.5%
	2-tail test	10%	5%	2.5%	1%
n	38	0.2709	0.3202	0.3760	0.4128
	39	0.2673	0.3160	0.3712	0.4076
	40	0.2638	0.3120	0.3665	0.4026
	41	0.2605	0.3081	0.3621	0.3978

Mark scheme

Question		Answer/Indicative content	Marks	Guidance	
1	a	1-tail. Testing for "positive" linear correlation	E1(AO 3.1b) [1]	or Expect larger circumference to go with larger height oe	
	b	$\mathrm{H}_{0}: \rho=0$ $\mathrm{H}_{1}: \rho>0$ where ρ is lin correlation coeff in pop Comp 0.642 with 0.6319 Reject H_{0}. There is evidence of +ve (linear) corr'n between height \& circ of trees of this variety (in this wood)	B1(AO1.1) B1(AO2.5) M1(AO1.1) M1(AO1.1) A1(AO2.2b)	B1B0 for 1 error, eg undefined ρ or 2-tail In context, not definite.	Allow omission of "linear" throughout Allow without "linear" and / or "in this wood"
	c	eg sample is small conditions in other areas may be different	E1(AO 3.5a) E1(AO 3.5a) [2]	\pm	
		Total	8		
2	a	Points close to straight line with +ve gradient Hence 0.913 is the correct value	B1(AO 2.4) B1(AO 2.2b) [2]	Dep on 1st B1	

		prop drive (and vice versa)	E1ind (AO 2.4) [2]	or similar in context Examiner's Comments Many candidates understo these worded their answe "numbers" (rather than "prop of transport, without makin discussing each individua	NOT "as a increases b decreases" unless in context he point, although some of dly, referring to the tions") using the two types clear that they were ather than all LAs together.
		Decrease the size of r or Make r less negative	E1 (AO 2.2b) [1]	Make (value of) r increase r closer to 0 Ignore eg "greatly" Ignore all else	NOT Make r decrease NOT Weaken the corr'n NOT Make corr'n less
	b	(i)		Examiner's Comments Some candidates stated that value of r would decrease, possible that what they me decrease, which is correct candidates could not be c candidates ensured that th that r would "become less or "decrease in magnitude" inadequate answers such or "It will weaken the value answers such as "The out	would decrease, or that the of which are incorrect. It is was that the size of r would unfortunately these ed the mark. Some was no ambiguity by saying ative" or "move closer to 0" me candidates gave It will weaken the correlation" . There were a few irrelevant will skew the distribution."
		Little effect (because the population of the LA is small compared with the whole (ii) population)	$\begin{gathered} \mathrm{E} 1 \\ (\mathrm{AO} 2.2 \mathrm{~b}) \\ \\ {[1]} \end{gathered}$	or No effect or similar Ignore all else Examiner's Comments Many good answers were	
		(iii)Ignore all reference to public transport Type 1 answers People don't travel far to work	$\begin{gathered} \mathrm{E}_{1} \\ (\mathrm{AO} 2.4) \end{gathered}$	$\frac{\text { Type } 2 \text { answers }}{\text { Any suggested }}$	

			Jobs are close High proportion walk (or cycle)	[1]	reason why few drive eg Few garages; Parking expensive or similar in context Examiner's Comments Most candidates recognised th proportion drive to work. But suggested that this is because public transport available. Oth people drive to work. This was answer to the question. To ga fall into one of two categories: 1. A sensible suggestion for a particular area few people drive 2. A statement that it is likely th cycle to work, or that jobs are	NOT just Few drive e key factor - that a tiny ome candidates mistakenly there is a great deal of rs merely stated that few not considered an adequate the mark answers had to possible reason why in this hat a large proportion walk or generally close to home.
			Total	6		
4		a	H_{0} : There is no linear correlation between X and Y H_{1} : There is positive linear correlation between X and Y Compare with 0.6694 Reject H_{0} There is evidence of positive linear correlation between X \& Y	B1 (AO1.1) B1 (AO2.5) B1 (AO1.1) M1 (AO1.1) A1 (AO2.2b) [2]	B1B0 for one error, eg omission of "linear" OR "+ve" In context, not definite	$\text { Or } \rho=0$ $\text { Or } \rho>0$
		b	A: Negative (linear) correlation C: No (linear) correlation D: $r=1$	E1 (AO1.2) E1 (AO2.2a) E1 (AO1.2) [3]	or points not close to straight line, or $r=0$	Allow without "linear" Allow without "linear"

(C) OCR 2017.

