- Past experience shows that 35% of the senior pupils in a large school know the regulations about bringing cars to school. The head teacher addresses this subject in an assembly, and afterwards a random sample of 120 senior pupils is selected. In this sample it is found that 50 of these pupils know the regulations. Use a suitable approximation to test, at the 10% significance level, whether there is evidence that the proportion of senior pupils who know the regulations has increased. Justify your approximation.
 - [11]
- 2. An examination board is developing a new syllabus and wants to know if the question papers are the right length. A random sample of 50 candidates was given a pre-test on a dummy paper. The times, *t* minutes, taken by these candidates to complete the paper can be summarised by

$$n = 50,$$
 $\Sigma t = 4050,$ $\Sigma t^2 = 329\ 800.$

Assume that times are normally distributed.

i. Estimate the proportion of candidates that could not complete the paper within 90 minutes.

[6]

ii. Test, at the 10% significance level, whether the mean time for all candidates to complete this paper is 80 minutes. Use a two-tail test.

[7]

- iii. Explain whether the assumption that times are normally distributed is necessary in answering
 - a. part **(i)**,
 - b. part (ii).

[2]

3. Records for a doctors' surgery over a long period suggest that the time taken for a consultation, *T* minutes, has a mean of 11.0. Following the introduction of new regulations, a doctor believes that the average time has changed. She finds that, with new regulations, the consultation times for a random sample of 120 patients can be summarised as

$$n = 120, \Sigma t = 1411.20, \Sigma t^2 = 18737.712.$$

i. Test, at the 10% significance level, whether the doctor's belief is correct.

[11]

ii. Explain whether, in answering part (i), it was necessary to assume that the consultation times were normally distributed.

[1]

- 4. It is known that the lifetime of a certain species of animal in the wild has mean 13.3 years. A zoologist reads a study of 50 randomly chosen animals of this species that have been kept in zoos. According to the study, for these 50 animals the sample mean lifetime is 12.48 years and the population variance is 12.25 years².
 - i. Test at the 5% significance level whether these results provide evidence that animals of this species that have been kept in zoos have a shorter expected lifetime than those in the wild.
 - ii. Subsequently the zoologist discovered that there had been a mistake in the study. The quoted variance of 12.25 years² was in fact the sample variance. Determine whether this makes a difference to the conclusion of the test.
 - iii. Explain whether the Central Limit Theorem is needed in these tests.

[1]

[3]

[5]

[7]

- In the past, the time spent in minutes, by customers in a certain library had mean 32.5 and standard deviation 8.2.
 Following a change of layout in the library, the mean time spent in the library by a random sample of 50 customers is found to be 34.5 minutes.
 Assuming that the standard deviation remains at 8.2, test at the 5% significance level whether the mean time spent by customers in the library has changed.
- 6. The times taken by employees to complete a task are normally distributed with standard deviation 2.6 minutes. A manager claims that the mean time is 15.5 minutes but an employee suspects that the mean time is greater than this. He intends to carry out a hypothesis test at the 5% significance level to test this claim. He records the times taken by a random sample of 12 employees.
 - (a) Find the critical region for the test.
 - (b) The total of the times taken by the 12 employees was 202.1 minutes. Carry out the test. [5]

- 7. In the past, the time spent by customers in a certain shop had mean 10.5 minutes and standard deviation 4.2 minutes. Following a change of layout in the shop, the mean time spent in the shop by a random sample of 50 customers is found to be 12.0 minutes.
 - (a) Assuming that the standard deviation is unchanged, test at the 1% significance level whether the mean time spent by customers in the shop has changed.

Another random sample of 50 customers is chosen and a similar test at the 1% significance level is carried out. Given that the population mean time has not changed,

[7]

(b) state the probability that the conclusion of the test will be that the population mean time has changed. [1]

END OF QUESTION paper

Mark scheme

Question	Answer/Indicative content	Marks	Part marks and guidance		
1	H ₀ : <i>p</i> = 0.35 H ₁ : <i>p</i> > 0.35	B2	One error (e.g. μ , no symbol, 2-tailed) B1, but $\overline{\boldsymbol{\chi}}$, <i>t</i> etc: B0. Allow π	H ₀ : µ= 42, H ₁ : µ> 42: B1 only	
	B(120, 0.35)	M1	B(120, 0.35) stated or implied		
	≈ N(42, 27.3)	M1	N(<i>np, npq</i>), their attempt at 120 × 0.35	120 × 0.35 × 0.65 <i>Not</i> N(<i>np, nq</i>).	
	$\alpha: \qquad z = \frac{49.5 - 42}{\sqrt{27.3}}$	A1ft	Standardise, with their np and \sqrt{npq} , right cc Allow both 49.5 and 50.5 and both in CR	√50 or √120: M1M1A0A0A1M0A0	
	= 1.435	A1	z in range [1.43, 1.44] before rounding	Or <i>p</i> in range [0.075, 0.0764]	
	> 1.282 [or 0.0757 < 0.1]	A1ft	Comparison with 1.282, ft on <i>zl p</i> or √120	Or ρ explicit comparison with 0.1	
	β: CV = 42.5 + 1.282 × √27.3 [= 49.198]	A1ft	CV 42.5 + <i>z</i> × √ 27.3, ignore LH, ft on <i>np</i> , <i>npq</i>	No cc: 48.618, can get A0A1A0	
	z = 1.282 and compare 50	A1	z = 1.282 used in RH CV and compare 50		
	CR ≥ 50 or ≥ 49.2	A1ft	CV correct ft on z , but don't worry about \ge	Must round up. 49 from 49.2: A1A1A0	
	Reject H ₀ .	M1	Consistent first conclusion, needs correct method and comparison	Can give M1A1 even if comparison not explicit. Allow from exact binomial	
	Significant evidence that proportion who know regulations has increased	A1ft	Contextualised, needs "who know regulations" or "pupils", and "evidence"	Ft on TS & CV Or exact equivalent somewhere	
	np > 5 [= 42] from normal attempted	M1	From $\rho = 0.35$ or 5/12, don't need 42	<i>or n</i> large or <i>p</i> close to 0.5 asserted	
	nq = 78 > 5 and no others apart from <i>n</i> large	A1	Need 78, or 70 from 5/12, <i>not npq</i>	and the other qualitative reason asserted	
	SC: If B0, B(120, 5/12): N(50, 29.17) M1M1 np > 5, ng = 70 > 5: M1A1 Ma× 4		Wrong or no cc [1.627, 0.0519 or 1.5311, 0.0629]: loses (a) first two A1A1 only Exact B(120, 0.35): P(\geq 50) = 0.076824, CR \geq 50.		
	Mp > 3, Mq = 70 > 3. MTAT Max 4 SC: P(≥ 42): B2 M1M1A0A0A1M0A0		EXACT B(120, 0.35): $P(\ge 50) = 0.076824$, $CR \ge 50$. B2M1, M0A0A0A0, M1A1M0A0		
	© OCR 2017	I	Page / of 18	1	

© OCR 2017.

				NB: If S3 difference of proportions test used, consult PE	Examiner's Comments This hypothesis test involving a normal approximation to binomial was generally well done, apart from those who used the sample proportion 5/12 instead of the hypothesised proportion 0.35. The plan is to convert from B(120, 0.35) to N(42, 27.3) and either to find a critical value or to find P(\geq 50). Common causes of loss of marks were: • Omission of the continuity correction (42.5 for the CV, 49.5 for the probability) • Failure to justify the approximation fully (examiners needed to see $nq = 78$ if the condition $nq > 5$ was used, while " $npq > 5$ " is wrong, as is " n large and np > 5") • Stating the hypotheses in terms of μ rather than the original parameter p • Attempts to use $\sqrt{120}$ or $\sqrt{50}$ in the standardisation.
		Total	11		
2	i	$\hat{\mu} = \overline{x} = 81$	B1	81 only, can be implied	
	i	$\frac{329800}{50} - 81^2 \qquad [=35]$	M1	Correct formula for biased estimate, their "81", can be implied	
	i	$\times \frac{50}{49};$ = 35.71	M1	Multiply by 50/49. SC: single formula: M2, or M1 if wrong but divisor 49 anywhere [can be recovered if correctly done in part (ii)]	

ii		B1	<i>z</i> = 1.645 used in this expression (not just seen), <i>not</i> from one-tail
ï	81 < 81.39	A1	Compare CV with 81, allow 81.08 from one-tailed ($z = 1.282$) (but not on their σ) 81-1.645 $\sqrt{\frac{35.71}{50}}$: If H ₀ : $\mu =$ 80: (B2) M1B1A0M0A0. If H ₀ : $\mu = 81$: (B0) M1B1A1 (79.61) M0A0
ii	Do not reject H₀.	M1	Correct first conclusion, needs $\sqrt{50}$, correct comparison type, μ and $\overline{\boldsymbol{x}}$ not consistently wrong way round (thus H ₀ : μ = 81 can get B0 M1A1A1 M0A0, max 3/7) In method β , it needs to be clear that comparison involves $\overline{\boldsymbol{x}}$.
			Contextualised (mention "time"), acknowledge uncertainty ("evidence that") <i>Not</i> "significant evidence that mean time is 80" FT on wrong <i>z</i> -value or wrong critical value if previous mark gained SC: One–tailed: can get B1B0 M1A1B0 M1A1, max 5/7 No √50: can get B2 M0 B1 M0, max 3/7
ii	Insufficient evidence that the mean time is not 80 minutes.	A1ft	Examiner's Comments
			Many answered this question very well, although relatively few achieved all 7 marks. Those who omitted the $\sqrt{50}$ factor here lost 4 marks, as did
			those who stated their hypotheses in terms of 81 and not 80 (a serious mistake emphasised in all
			recent Reports to Centres). Those who used a critical region often centred it on 81 rather than 80; were these S3 candidates who had confused the method with confidence intervals? The same

				comments about the need to state the conclusion properly apply as in question 6(iii).	
	iii	(a) Yes (single observation only)	B1	No reason needed, but withhold if wrong reason seen. Allow "yes, no distn given"	
				"No" <i>and</i> refer to central limit theorem or "large sample" {note for scoris zoning — (a) and (b) to be in single zone}	
				Examiner's Comments	
	ili	(b) No, CLT applies to large sample	B1	As usual a question that tests understanding of the Central Limit Theorem was poorly answered. "No, yes" was more common than the correct "yes, no" (+ reason). Many said that you didn't have to assume a normal distribution in part (i) as <i>n</i> was large; clearly they had not realised that in part (i) we are talking about probabilities for a single observation. These candidates often gave "yes" as their answer to (b), presumably on no better grounds than expecting the two answers to be different. Another common wrong answer to (a) was "no as we know it is normal"; Examiners find it hard to account for the misconception here.	
		Total	15		
3	i	$\bar{t} = 11.76$	B1	11.76 seen or implied	
	i	$\hat{\sigma}^2 = \frac{120}{119} \left(\frac{18737.712}{120} - 11.76^2 \right) = 18$	M1	Biased estimate (= 17.85)	
	i		M1	× 120/119, <i>or</i> single formula with 119 divisor	i.e. correct single formula gets M2
	i		A1	Answer 18 ± 0.05	

i	H₀: µ = 11.0, H₁: µ ≠ 11.0	B2	One error, B1, but \vec{t} , <i>t</i> , <i>x</i> etc: B0 (ι : B1)	If both hypotheses involve 11.76, only
i	α : $z = \frac{11.76 - 11.0}{\sqrt{18/120}} = 1.9623$	M1	Standardise with 120, ignore cc or √ errors	further mark possible is next M1 [ma× 5/11]
i		A1	A.r.t. (±)1.96 <i>or p</i> ∈[0.0245, 0.025] www	120 omitted gets no further marks [ma× 6/11]
i	> 1.645	A1	Compare explicitly with (±)1.645 or 0.05, consistent with their <i>z</i> or <i>p. [Needs to be "next to"</i> <i>TS]</i>	Ignore "N(11.76,)" <i>unless</i> hypotheses omitted altogether, in which case treat as hypotheses in terms of 11.76
i	β: CV 11.0 ± 1.645 × √ (18/120)	M1	11.0 + $z\sigma/\sqrt{120}$, needs 120 and + or ±	lf 11.76 – <i>z</i> σ/√120, give M1A0A0 M0A0
i	= 11.637 (or 10.363)	A1	Ignore 10.363	(even if correct hypotheses)
i	11.76 > 11.64	A1	Explicit comparison, consistent tail	
i	Reject H_0 . Significant evidence that the average time has changed	M1	Correct first conclusion, allow "Accept H1"	Needs correct method (including 120) and
i		A1ft	Contextualised, acknowledge uncertainly, FT on wrong CR / z / ρ	comparison type, 11.0 in at least one hypothesis Allow "increase" instead of "change"
i			Examiner's Comments Another standard question, if lengthy, and generally well answered. It is pleasing to note how few candidates gave their hypotheses in terms of the sample mean (H ₀ : $\mu = 11.76$ instead of the correct H ₀ : $\mu = 11.0$). Most, too, remembered to multiply the variance by 120/119. However, quite a few omitted the $\sqrt{120}$ in the denominator of the standardisation. Conclusions were well stated.	
ii	No, the Central Limit Theorem applies	B1	or "No, large sample". Withhold if extra wrong or irrelevant reason(s) given Examiner's Comments	Needs both "no" and reason.

				As so often, a question that asked whether the normal distribution had to be assumed was met with a range of bafflingly self-contradictory answers. 'Yes because we can use the central limit theorem' was probably typical. Perhaps the misunderstanding stems from what the word assume means, perhaps from a failure to distinguish between the two different distributions in the question. The question asked whether the <i>consultation times</i> (that is, the parent population) had to be normal, whereas the calculation involves the <i>sample mean</i> . The distribution of the parent population does <i>not</i> have to be normal, because the central limit theorem tells us that the distribution of the sample mean <i>is</i> (approximately) normal.
		Total	12	
4	i	H ₀ : μ = 0.55, H ₁ : μ < 13.3	B2	Both correct: B2. One error [e.g. p, \neq , no symbol] B1, but $\overline{\mathbf{X}} \ \overline{\mathbf{X}}$ etc B0
	i	a: $z = \frac{12.48 - 13.3}{\sqrt{12.25/50}} = -1.6566 [p = 0.0488]$	М1	Standardise with √50, allow √ errors, allow cc, allow 13.3 – 12.48
	i		A1	<i>z</i> in range [–1.66, –1.65], or p in range [0.04875, 0.0489], allow 0.9512 only if consistent
	i	[12.25/50 = 0.245] < -1.645 [p < 0.05]	B1	Compare with -1.645 , allow $+1.6566$ with $+1.645$, or p with 0.05/0.95 as consistent

i	^{β:} CV 13.3 - 1.645 $\sqrt{\frac{12.25}{50}}$ = 12.4857	M1	13.3 – zơ/√50, any recognisable <i>z</i> , allow √errors etc, ignore 13.3 + …
i		B1	<i>z</i> = 1.645
i	12.48 < CV	A1	Compare 12.49 (or better) with 12.48, ignore 13.3 + SC: 2-tailed, 12.33 gets B1B0 M1B0A1ft M1A1
i	Reject H ₀ .	M1	Consistent, needs $\sqrt{50}$, like-with-like comparison, hypotheses <i>not</i> 12.48
			Contextualised, acknowledge uncertainty, their <i>z</i> SC1: 2-tailed: can get B1 M1A1B0 M1A1 max 5/7 SC2: No √50: can get B2 M0A0 B1 M0 max 3/7 SC3:
i	Significant evidence that animals in zoos have shorter expected lifetime	A1ft	and between them the two parts produced often produced chaotic results. The correct method was that part (i) was a straightforward test for the mean of a normal distribution, using the given variance with a divisor of 50, while in part (ii) it was necessary to multiply the given variance by 50/49 (and then divide by 50 again). Unfortunately a lot of candidates did not appreciate the difference between the two variances and attempted somewhat desperately to find some other difference between parts (i) and (ii), usually dividing by 50 in one part but not the other. Some wrote

			identical solutions to the two parts, which was at	
			least honest! It may be worth spelling out that a	
			divisor of <i>n</i> is always needed when the variable	
			used for calculation is a sample mean.	
			used for calculation is a sample mean.	
			Several candidates took 12.25 to be the standard	
			deviation, which of course led to very wrong	
			numerical answers (though they could still get	
			most of the marks).	
			most of the marks).	
			More pleasingly, only a small number of	
			candidates began with the completely wrong	
			hypotheses H ₀ : $\mu = 12.48$, H ₁ : $\mu \ge 12.48$. Those	
			who used the critical region method needed to be	
			careful with accuracy as the critical value and	
			sample mean differ only in the fourth significant	
			figure; in fact it is always wise in this type of test to	
			calculate critical values to plenty of decimal places.	
			The fact that an apparently trifling change in the	
			test produces the opposite conclusion is perhaps	
			a commentary on the "significance level" approach	
			to testing, and in the real world the use of <i>p</i> -values	
			(which here would be 0.0488 and 0.0505) has	
			become common.	
			Although many gave their conclusions in an	
			admirably correct way, a statement that "the mean	
			lifetime of animals <i>has been reduced</i> " is wrong;	
			candidates who wrote this were answering a	
			different question.	
	$\hat{\sigma}^2 = \frac{50}{49} \times 12.25$ [= 12.5]		Multiply 12.25 by 50/49, allow √ etc, allow if done	
ii	$o = \frac{1}{49} \times 12.25$ [12.3]	M1	in part (i) but then 0	
	10.40 10.0			
	$z = \frac{12.48 - 13.3}{\sqrt{2}} = -1.64$			
ii	$2 - \frac{100}{\sqrt{12.5/50}}$ [$\rho = 0.0505$]	M1	Standardise with √50	
		l		

	1	1		1
ii		A1	Obtain a.r.t. –1.64, allow +1.64 if consistent with (i).	
ii > -1.645 [<i>p</i> >	• 0.05]	B1	Compare with same CV as in (i)	
			State opposite conclusion (ft), any form, allow $\overline{oldsymbol{\chi}}$ 'µ	
			here , needs M1M1	
			Identical mark scheme for method β , CV	
			12.4775	
			SC1: 50 omitted consistently in	
			both: M1M0A0B1A1 max 3/5	
			SC2: no √50 in (i), √50 but not 50/49 in (ii):	
			M0M1A0B1A1 max 3/5	
			Examiner's Comments	
			This was by far the least well answered question,	
			and between them the two parts produced often	
			produced chaotic results. The correct method was	
			that part (i) was a straightforward test for the mean	
			of a normal distribution, using the given variance	
ii Opposite conclusi	on	A1ft	with a divisor of 50, while in part (ii) it was	
			necessary to multiply the given variance by 50/49	
			(and then divide by 50 again). Unfortunately a lot of	
			candidates did not appreciate the difference	
			between the two variances and attempted	
			somewhat desperately to find some other	
			difference between parts (i) and (ii), usually dividing	
			by 50 in one part but not the other. Some wrote	
			identical solutions to the two parts, which was at	
			least honest! It may be worth spelling out that a	
			divisor of n is always needed when the variable	
			used for calculation is a sample mean.	
			Several candidates took 12.25 to be the standard	
			deviation, which of course led to very wrong	

			More pleasingly, only a small number of candidates began with the completely wrong hypotheses $H_0: \mu = 12.48$, $H_1: \mu \ge 12.48$. Those who used the critical region method needed to be careful with accuracy as the critical value and sample mean differ only in the fourth significant figure; in fact it is always wise in this type of test to calculate critical values to plenty of decimal places. The fact that an apparently trifling change in the test produces the opposite conclusion is perhaps a commentary on the "significance level" approach to testing, and in the real world the use of <i>p</i> -values (which here would be 0.0488 and 0.0505) has become common. Although many gave their conclusions in an admirably correct way, a statement that "the mean lifetime of animals <i>has been reduced</i> " is wrong; candidates who wrote this were answering a different question.
111	Yes as population not known to be normal	B1	Not " <i>n</i> large" unless "Yes, not known normal, but <i>n</i> large so can use" No wrong extras, e.g. "depends on whether it's sample or population" Examiner's Comments As so often, a question testing the use of the Central Limit Theorem revealed misunderstandings. As usual the question required <i>either</i> a necessary or a sufficient condition (here a necessary condition) and the mark scheme penalised the quotation of the wrong condition (though an answer such as "We need to use the CLT because the parent distribution is not stated

					n use it as <i>n</i> is large" was	
				accepted, the key word	being "can").	
				There seems to be at lea		
					ut the CLT. One is that a	
				large sample makes the		
				normally distributed; put		
					ssed by the answer "We	
				do not need to use the 0	Central Limit Theorem as it	
				is a large sample" (or "a	continuous distribution");	
				what do these candidate	es think that the CLT	
				actually says? It may be	worth emphasising that	
				we are talking about two	o different variables (a	
				single observation X, and		
				observations $X_{ m b}$, and	that these two variables	
				have different distributio	ns. The statement of the	
				CLT is that it does not n	natter what the distribution	
				of a single observation is	s; if the sample size is	
				large enough, the distrib	oution of the sample mean	
				\overline{X} s approximately nor	mal	
		Total	13			
		$H_0: \mu = 32.5$	B1(AO1.1)	Must be		
				stated in		
			B1(AO2.5)	terms of		
		$H_1: \mu \neq 32.5$ where μ is mean time spent by all customers				
				parameter		
		(2)	M1(AO3.3)	Values	Use of 34.5	
5		$X \sim N\left(32.5, \frac{8.2^2}{50}\right)_{\text{and } X > 34.5}$		B1B0 for	B0B0	
Ŭ		$\int_{1}^{1} \frac{1}{3} $		one error,		
				e.g.		
			A1(AO3.4)	undefined μ		
				or 1-tail	OR	
		P(X> 34.5) = 0.0423	A1(AO1.1)	Stated or		
	1			implied	M1	
			M1(AO1.1)	implica		

		Comparison with 0.025 Do not reject H ₀ Insufficient evidence that mean time in the library has changed	A1FT(AO2.2b) [7]	BC	$\frac{34.5 - 32.5}{8.2 \div \sqrt{50}}$ allow without square root A1 = 1.725	
				Allow comparison with 0.05 if H1 : μ > 32.5 In context, not definite; FT their 0.0423, but not comparison with 0.05	A1 Comparison with 1.96 (allow comparison with 1.645 if H1 : μ > 32.5) FT their 1.725, but not comparison with 1.645	
		Total	7			
6	а	$X \sim N(15.5, \frac{2.6^2}{12})$ $15.5 + 1.645 \frac{2.6}{\sqrt{12}}$	M1(AO 3.3) M1(AO 3.4) A1(AO 1.1)	stated or implied		
		Critical region is \bar{x} > 16.7 (3 sf)	[3]			

	H ₀ : μ = 15.5 H ₁ : μ > 15.5 where μ is mean time by all employees	B1(AO1.1) B1(AO2.5)	In terms of parameter values B1B0 one error eg undefined μ or two-tail Use of 17.5 B0B0
b	\bar{x} = 16.8 It their \bar{x} & CR 16.8 is within CR It their \bar{x} & CR Reject H ₀ . There is evidence that mean time for task is greater than 15.5 (minutes)	A1ft(AO3.3) M1(AO1.1) A1ft(AO2.2b) [5]	OR P(X > 16.8) = 0.0416 (3 sf) Comp 0.05 Allow 0.25 if $H_1: \mu \neq 15.5$ In context, not definite. ft their 0.0416 but not comp with 0.25
	Total	8	

7	a	Ho: μ = 10.5 where μ is pop mean time in shop H:: $\mu \neq$ 10.5 $\overline{X} \sim N(10.5, \frac{4.2}{\sqrt{50}})$ and $X = 12$ P($\overline{X} > 12$) = 0.00578 or better Compare with 0.005 Do not reject H0 Insufficient evidence that mean time has changed	B1 (AO1.1) B1 (AO2.5) M1 (AO3.3) A1 (AO3.4) M1 (AO1.1) M1 (AO1.1) A1 (AO2.2b) [7]	One error, eg undefined µ or 1-tail: B0B1 May be implied or 0.006 or 0.0058 BC In context. Not definite, eg "Mean time has not changed" A0
	b	0.01	B1 (AO1.2) [1]	
		Total	8	