1. Past experience shows that 35% of the senior pupils in a large school know the regulations about bringing cars to school. The head teacher addresses this subject in an assembly, and afterwards a random sample of 120 senior pupils is selected. In this sample it is found that 50 of these pupils know the regulations. Use a suitable approximation to test, at the 10\% significance level, whether there is evidence that the proportion of senior pupils who know the regulations has increased. Justify your approximation.
2. An examination board is developing a new syllabus and wants to know if the question papers are the right length. A random sample of 50 candidates was given a pre-test on a dummy paper. The times, t minutes, taken by these candidates to complete the paper can be summarised by

$$
n=50, \quad \quad \sum t=4050, \quad \sum t^{2}=329800
$$

Assume that times are normally distributed.
i. Estimate the proportion of candidates that could not complete the paper within 90 minutes.
ii. Test, at the 10\% significance level, whether the mean time for all candidates to complete this paper is 80 minutes. Use a two-tail test.
iii. Explain whether the assumption that times are normally distributed is necessary in answering
a. part (i),
b. part (ii).
[2]
3. Records for a doctors' surgery over a long period suggest that the time taken for a consultation, Tminutes, has a mean of 11.0. Following the introduction of new regulations, a doctor believes that the average time has changed. She finds that, with new regulations, the consultation times for a random sample of 120 patients can be summarised as

$$
n=120, \Sigma t=1411.20, \Sigma t^{2}=18737.712
$$

i. Test, at the 10% significance level, whether the doctor's belief is correct.
ii. Explain whether, in answering part (i), it was necessary to assume that the consultation times were normally distributed.
4. It is known that the lifetime of a certain species of animal in the wild has mean 13.3 years. A zoologist reads a study of 50 randomly chosen animals of this species that have been kept in zoos. According to the study, for these 50 animals the sample mean lifetime is 12.48 years and the population variance is 12.25 years 2.
i. Test at the 5\% significance level whether these results provide evidence that animals of this species that have been kept in zoos have a shorter expected lifetime than those in the wild.
ii. Subsequently the zoologist discovered that there had been a mistake in the study. The quoted variance of 12.25 years 2 was in fact the sample variance. Determine whether this makes a difference to the conclusion of the test.
iii. Explain whether the Central Limit Theorem is needed in these tests.
5.

In the past, the time spent in minutes, by customers in a certain library had mean 32.5 and standard deviation 8.2.

Following a change of layout in the library, the mean time spent in the library by a random sample of 50 customers is found to be 34.5 minutes.
Assuming that the standard deviation remains at 8.2 , test at the 5% significance level whether the mean time spent by customers in the library has changed.
6. The times taken by employees to complete a task are normally distributed with standard deviation 2.6 minutes. A manager claims that the mean time is 15.5 minutes but an employee suspects that the mean time is greater than this. He intends to carry out a hypothesis test at the 5% significance level to test this claim. He records the times taken by a random sample of 12 employees.
(a) Find the critical region for the test.
(b)

The total of the times taken by the 12 employees was 202.1 minutes. Carry out the test.
7. In the past, the time spent by customers in a certain shop had mean 10.5 minutes and standard deviation 4.2 minutes. Following a change of layout in the shop, the mean time spent in the shop by a random sample of 50 customers is found to be 12.0 minutes.

Assuming that the standard deviation is unchanged, test at the 1% significance level whether the mean time spent by customers in the shop has changed.

Another random sample of 50 customers is chosen and a similar test at the 1% significance level is carried out. Given that the population mean time has not changed, state the probability that the conclusion of the test will be that the population mean time has changed.

Mark scheme

Question		Answer/Indicative content	Marks	Part marks and guidance	
1		$\begin{aligned} & H_{0}: p=0.35 \\ & H_{1}: p>0.35 \\ & \mathrm{~B}(120,0.35) \end{aligned}$	B2	One error (e.g. μ, no symbol, 2-tailed) B1, but \boldsymbol{X}, t etc: BO. Allow π	$\mathrm{H}_{0}: \mu=42, \mathrm{H}_{1}: \mu>42: \mathrm{B} 1$ only
		M1	$B(120,0.35)$ stated or implied		
		$\approx N(42,27.3)$	M1	$\mathrm{N}(n p, n p q)$, their attempt at 120×0.35	$120 \times 0.35 \times 0.65 \operatorname{Not} N(n p, n q)$.
		$\alpha: \quad z=\frac{49.5-42}{\sqrt{27.3}}$	A1ft	Standardise, with their $n p$ and $\sqrt{ } n p q$, right cc Allow both 49.5 and 50.5 and both in CR	$\sqrt{ } 50$ or $\sqrt{120}$: M1M1AOAOA1M0A0
		$=1.435$	A1	z in range [1.43, 1.44] before rounding	Or p in range [0.075, 0.0764]
		> 1.282 [or $0.0757<0.1]$	A1ft	Comparison with 1.282, ft on $/$ /p or $\sqrt{ } 120$	Or pexplicit comparison with 0.1
		$\beta: C V=42.5+1.282 \times \sqrt{ } 27.3[=49.198]$	A1ft	CV $42.5+z \times \sqrt{ } 27.3$, ignore LH, ft on $n p, n p q$	No cc: 48.618, can get A0A1AO
		$z=1.282$ and compare 50	A1	$z=1.282$ used in RH CV and compare 50	
		$C R \geq 50$ or ≥ 49.2	A1ft	CV correct ft on z, but don't worry about \geq	Must round up. 49 from 49.2: A1A1AO
		Reject H_{0}.	M1	Consistent first conclusion, needs correct method and comparison	Can give M1A1 even if comparison not explicit. Allow from exact binomial
		Significant evidence that proportion who know regulations has increased	A1ft	Contextualised, needs "who know regulations" or "pupils", and "evidence"	Ft on TS \& CV Or exact equivalent somewhere
		$n p>5$ [$=42]$ from normal attempted	M1	From $p=0.35$ or 5/12, don't need 42	or n large or p close to 0.5 asserted
		$n q=78>5$ and no others apart from n large	A1	Need 78, or 70 from 5/12, not npq	and the other qualitative reason asserted
		SC: If B0, B(120, 5/12):		Wrong or no cc [1.627, 0.0519 or 1.5311,	
		N(50, 29.17) M1M1		0.0629]: loses (a) first two A1A1 only	
		$n p>5, n q=70>5: \mathrm{M} 1 \mathrm{~A} 1 \mathrm{Max} 4$		Exact $\mathrm{B}(120,0.35): \mathrm{P}(\geq 50)=0.076824, C R \geq 50$.	
		SC: P(\geq 42): B2 M1M1AOAOA1M0A0		B2M1, MOAOAOAO, M1A1M0A0	

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \& \& \& \& NB: If S3 difference of proportions test used, consult PE \& \begin{tabular}{l}
Examiner's Comments \\
This hypothesis test involving a normal approximation to binomial was generally well done, apart from those who used the sample proportion \(5 / 12\) instead of the hypothesised proportion 0.35 . The plan is to convert from \(\mathrm{B}(120,0.35)\) to \(\mathrm{N}(42\), 27.3) and either to find a critical value or to find \(\mathrm{P}(\geq\) \\
50). Common causes of loss of marks were: \\
- Omission of the continuity correction (42.5 for the CV, 49.5 for the probability) \\
- Failure to justify the approximation fully (examiners needed to see \(n q=78\) if the condition \(n q>5\) was used, while " \(n p q>5\) " is wrong, as is " \(n\) large and \(n p>5\) ") \\
- Stating the hypotheses in terms of \(\mu\) rather than the original parameter \(p\) \\
- Attempts to use \(\sqrt{ } 120\) or \(\sqrt{ } 50\) in the standardisation.
\end{tabular} \\
\hline \& \& \& Total \& 11 \& \& \\
\hline 2 \& \& i \& \[
\begin{aligned}
\& \hat{\mu}=\bar{x}=81 \\
\& \frac{329800}{50}-81^{2} \quad[=35] \\
\& \times \frac{50}{49} ; \quad=35.71
\end{aligned}
\] \& B1
M1

M1 \& | 81 only, can be implied |
| :--- |
| Correct formula for biased estimate, their " 81 ", can be implied |
| Multiply by 50/49. SC: single formula: M2, or M1 if wrong but divisor 49 anywhere |
| [can be recovered if correctly done in part (ii)] | \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \& i \& $$
1-\Phi\left(\frac{90-81}{\sqrt{35.71}}\right)=1-\Phi(1.506)=1-0.9339
$$
$$
=6.61 \% \text { or } 0.0661
$$ \& A1
M1

A1 \& | A.r.t. 35.7 - can't be recovered from part (ii). Can be implied |
| :--- |
| Standardise with their μ and σ, allow σ^{2}, cc but not $\sqrt{ } 50$ |
| Answer, a.r.t. 6.6\% or 0.066 |
| Examiner's Comments |
| It was perhaps indicative of candidates' over-rigid ways of answering questions that many omitted the $n /(n-1)$ factor for the variance in this part, yet went on and used it in the more familiar context of part (ii). More predictable was that many attempted to use a $\sqrt{ } n$ factor in the standard deviation in this part, where it is wrong. However, the correct answer was often seen. |

\hline \& ii \& \[
$$
\begin{aligned}
& H_{0}: \mu=80 \\
& H_{1}: \mu \neq 80 \\
& z=\frac{81-80}{\sqrt{35.71 / 50}}=1.183 \quad[\text { or } p=0.1183] \\
& <1.645 \\
& \text { CV } 80+1.645 \sqrt{\frac{35.71}{50}}=81.39
\end{aligned}
$$

\] \& \& | Correct, B2. One error, e.g. wrong or no symbol, >, B1, but x or $\overline{\boldsymbol{X}}_{\text {วr } t \text { tetc, or 81, B0. }}$ |
| :--- |
| NB: If both hypotheses involve 81, can't get final M1 |
| Standardise, with $\sqrt{ } 50$, allow $\sqrt{ }$, sign or cc errors, allow from biased variance |
| z, a.r.t. 1.18, or p, a.r.t. 0.118. Allow -1.18. |
| Their $z<1.645$ or $p>0.05$, not if one-tail. Allow -$1.18>-1.645$. Not just 1.645 seen. |
| $80+z s / \sqrt{ } 50$, allow $\sqrt{ }$ or cc errors, ignore - (no marks for - alone); |

\hline
\end{tabular}

					As so often, a question that asked whether the normal distribution had to be assumed was met with a range of bafflingly self-contradictory answers. 'Yes because we can use the central limit theorem' was probably typical. Perhaps the misunderstanding stems from what the word assume means, perhaps from a failure to distinguish between the two different distributions in the question. The question asked whether the consultation times (that is, the parent population) had to be normal, whereas the calculation involves the sample mean. The distribution of the parent population does not have to be normal, because the central limit theorem tells us that the distribution of the sample mean is (approximately) normal.	
			Total	12		
4		i i i	$H_{0}: \mu=0.55, H_{1}: \mu<13.3$ a : $z=\frac{12.48-13.3}{\sqrt{12.25 / 50}}=-1.6566[p=0.0488]$ $[12.25 / 50=0.245]<-1.645 \quad[p<0.05]$	B2 M1 A1 B1	Both correct: B2. One error [e.g. p, \neq, no symbol] B1, but $\overline{\boldsymbol{X}}, \overline{\boldsymbol{X}}_{\text {tc B0 }}$ Standardise with $\sqrt{ } 50$, allow $\sqrt{ }$ errors, allow cc , allow 13.3-12.48 z in range [$-1.66,-1.65$], or p in range [0.04875, $0.0489]$, allow 0.9512 only if consistent Compare with -1.645 , allow +1.6566 with +1.645 , or p with $0.05 / 0.95$ as consistent	

(

					to be normal, but we can use it as n is large" was accepted, the key word being "can"). There seems to be at least two widespread misunderstandings about the CLT. One is that a large sample makes the parent distribution normally distributed; put like this it is obviously wrong. Another is expressed by the answer "We do not need to use the Central Limit Theorem as it is a large sample" (or "a continuous distribution"); what do these candidates think that the CLT actually says? It may be worth emphasising that we are talking about two different variables (a single observation X, and the mean of n observations \bar{X} !, and that these two variables have different distributions. The statement of the CLT is that it does not matter what the distribution of a single observation is; if the sample size is large enough, the distribution of the sample mean s approximately normal.		
			Total	13			
5			$\mathrm{H}_{0}: \mu=32.5$ $\mathrm{H}_{1}: \mu \neq 32.5$ where μ is mean time spent by all customers $\begin{aligned} & X \sim \mathrm{~N}\left(32.5, \frac{8.2^{2}}{50}\right)_{\text {and } x>34.5} \\ & \mathrm{P}(x>34.5)=0.0423 \end{aligned}$	B1(AO1.1) B1(AO2.5) M1 (AO3.3) A1(AO3.4) A1(AO1.1) M1 (AO1.1)	Must be stated in terms of parameter Values B1B0 for one error, e.g. undefined μ or 1-tail Stated or implied	Use of 34.5 BOBO OR M1	

			Comparison with 0.025 Do not reject H_{0} Insufficient evidence that mean time in the library has changed	A1FT(AO2.2b) [7]	BC Allow comparison with 0.05 if H1: $\mu>$ 32.5 In context, not definite; FT their 0.0423, but not comparison with 0.05	$\begin{aligned} & \frac{34.5-32.5}{8.2 \div \sqrt{50}} \\ & \text { allow without } \\ & \text { square root } \\ & \text { A1 }=1.725 \\ & \text { A1 } \\ & \text { Comparison } \\ & \text { with } 1.96 \\ & \text { (allow } \\ & \text { comparison } \\ & \text { with } 1.645 \text { if } \\ & \text { H1 : } \mu>32.5 \\ & \text {) } \\ & \\ & \text { FT their } \\ & 1.725, \text { but } \\ & \text { not } \\ & \text { comparison } \\ & \text { with } 1.645 \end{aligned}$	
			Total	7			
6		a	$\begin{aligned} & X \sim \mathrm{~N}\left(15.5, \frac{2.6^{2}}{12}\right) \\ & 15.5+1.645 \frac{2.6}{\sqrt{12}} \end{aligned}$	M1 (AO 3.3) M1 (AO 3.4) A1(AO 1.1) [3]	stated or implied		

