1. A particle P is projected vertically upwards and reaches its greatest height 0.5 s after the instant of projection. Calculate
i. the speed of projection of P,
ii. the greatest height of P above the point of projection.

It is given that the point of projection is 0.539 m above the ground.
iii. Find the speed of P immediately before it strikes the ground.
2. A particle P is projected vertically downwards with initial speed $3.5 \mathrm{~ms}^{-1}$ from a point A which is 5 m above horizontal ground.
i. Find the speed of Pimmediately before it strikes the ground.

After striking the ground, Prebounds and moves vertically upwards and 0.87 s after leaving the ground P passes through A.
ii. Calculate the speed of Pimmediately after it leaves the ground.

It is given that the mass of P is 0.2 kg .
iii. Calculate the change in the momentum of P as a result of its collision with the ground.
3. A particle P is projected vertically downwards with speed $14 \mathrm{~m} \mathrm{~s}^{-1}$ from a point 30 m above the ground.
i. Calculate the speed of P when it reaches the ground.
ii. Find the distance travelled by P in the first 0.4 s of its motion.
iii. Calculate the time taken for P to travel the final 15 m of its descent.
4. A stone is released from rest on a bridge and falls vertically into a lake. The stone has velocity $14 \mathrm{~m} \mathrm{~s}^{-1}$ when it enters the lake.
i. Calculate the distance the stone falls before it enters the lake, and the time after its release when it enters the lake.

The lake is 15 m deep and the stone has velocity $20 \mathrm{~m} \mathrm{~s}^{-1}$ immediately before it reaches the bed of the lake.
ii. Given that there is no sudden change in the velocity of the stone when it enters the lake, find the acceleration of the stone while it is falling through the lake.
5. A particle is projected with speed mms^{-1} at an angle of θ above the horizontal from a point O. At time t s after projection, the horizontal and vertically upwards displacements of the particle from O are $x \mathrm{~m}$ and $y \mathrm{~m}$ respectively.
i. Express x and y in terms of t and θ and hence obtain the equation of trajectory

$$
y=x \tan \theta-\frac{g x^{2} \sec ^{2} \theta}{2 u^{2}}
$$

In a shot put competition, a shot is thrown from a height of 2.1 m above horizontal ground. It has initial velocity of $14 \mathrm{~ms}^{-1}$ at an angle of θ above the horizontal. The shot travels a horizontal distance of 22 m before hitting the ground.
ii. Show that $12.1 \tan ^{2} \theta-22 \tan \theta+10=0$, and find the value of θ.
iii. Find the time of flight of the shot.
6. A boy kicks a ball from a point O on horizontal ground. The ball first hits the ground at a distance of 60 m from O and the time of flight is 4 seconds. This motion of the ball is modelled as that of a particle moving freely under gravity.
(a) Find the horizontal and vertical components of the initial velocity of the ball.

The ball just clears a vertical post, of height $h \mathrm{~m}$, at a horizontal distance of 15 m from O.
(b) Show that $h=14.7$.
(c) Find the speed of the ball as it passes over the post.

Measurements show that the speed of the ball as it passes over the post is in fact not equal to the value found in part (c).
(d) State a deficiency of the model that might account for this.

[^0]7. A child is trying to throw a small stone to hit a target painted on a vertical wall. The child and the wall are on horizontal ground. The child is standing a horizontal distance of 8 m from the base of the wall. The child throws the stone from a height of 1 m with speed $12 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 20° above the horizontal.
i. Find the direction of motion of the stone when it hits the wall.

The child now throws the stone with a speed of $\mathrm{Vm} \mathrm{s}^{-1}$ from the same initial position and still at an angle of 20° above the horizontal. This time the stone hits the target which is 2.5 m above the ground.
ii. Find V.
8. A football is kicked from horizontal ground with speed $20 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of θ° above the horizontal. The greatest height the football reaches above ground level is 2.44 m . By modelling the football as a particle and ignoring air resistance, find
i. the value of θ,
ii. the range of the football.
9. A particle is projected with speed $v \mathrm{~ms}^{-1}$ from a point O on horizontal ground. The angle of projection is θ° above the horizontal. At time t seconds after the instant of projection the horizontal displacement of the particle from O is $x \mathrm{~m}$ and the upward vertical displacement from O is $y \mathrm{~m}$.
i. Show that

$$
y=x \tan \theta-\frac{4.9 x^{2}}{v^{2} \cos ^{2} \theta}
$$

A stone is thrown from the top of a vertical cliff 100 m high. The initial speed of the stone is $16 \mathrm{~ms}^{-1}$ and the angle of projection is θ° to the horizontal. The stone hits the sea 40 m from the foot of the cliff.
ii. Find the two possible values of θ.
10. A golfer hits a ball from a point O on horizontal ground with a velocity of $55 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 20° above the horizontal. The ball first hits the ground at a point A and the time of flight is t seconds. Assuming that there is no air resistance, calculate
(i) the value of t and the distance $O A$,
(ii) the speed and direction of motion of the ball 2.6 s after the golfer hits the ball.
11. In this question you must show detailed reasoning.

A football P is kicked with speed $25 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of elevation $2 a$ from a point A on horizontal ground. At the same instant a second football Q is kicked with speed $15 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of elevation $2 a$ from a point B on the same horizontal ground, where $A B=72 \mathrm{~m}$. The footballs are modelled as particles moving freely under gravity in the same vertical plane and they collide with each other at the point C (see diagram).
(a) Calculate the height of C above the ground.
(b) Find the direction of motion of P at the moment of impact.
(c) Suggest one improvement that could be made to the model.

Mark scheme

	iii iii iii	OR $V^{2}=U^{2} \pm 2 g \times 0.539$ $v^{2}=4.9^{2}+2 g \times 0.539$ $v=5.88 \mathrm{~ms}^{-1}$	M1	Motion from projection level down, non-zero initial speed ft cv (4.9), tolerate sign change from (i) Exact, isw rounding of 5.88 to 5.9 if 5.88 seen Examiner's Comments A few candidates had a clearly expressed sense of which direction was positive for velocity, acceleration and displacement. Each part could be tackled either from the position of projection or from the top of the motion. Which was the candidate's intention was sometimes unclear and might change from part to part. In part (iii) the answer required was exactly 5.88 . Candidates who evaluated $1.23+0.539$ (and calculated the speed of the particle after it had fallen from a position of rest at its greatest height) would get 5.89, and so lost an accuracy mark because of their premature approximation. If using $g=9.81$ the answers are: (i) $u=4.905$, so accept $4.9(0)$ or 4.91 . (ii) $s=1.226$.., so accept 1.23 but not 1.2. (iii) $v=5.8851$.., so accept 5.89 but not 5.9.	
		Total	8		
2	i	$v^{2}=3.5^{2}+2 g \times 5$ $v=10.5 \mathrm{~ms}^{-1}$	M1 A1	Uses $v^{2}=3.5^{2}+/-2 g 5$ Examiner's Comments Was almost always answered correctly.	Accept -3.5 ${ }^{2}$ for (-3.5$)^{2}$ etc
	ii		M1	$+/-5=0.87 u+/-g 0.87^{2} / 2$	May come from $s=v t-g t^{2} / 2$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& ii \& $$
5=0.87 u-g \times 0.87^{2} / 2
$$
$$
u=10.0 \mathrm{~ms}^{-1}
$$ \& A1

A1 \& | Examiner's Comments |
| :--- |
| This part was almost always answered correctly, save for a significant minority of candidates who had the wrong sign before the term involving g. One unusual feature was the high proportion of candidates who rearranged the standard suvat equation into a form which had u as its subject. | \&

\hline \& iii \& | Change $=0.2 \times 10.5+0.2 \times 10$ |
| :--- |
| Change $=4.1(0) \mathrm{kg} \mathrm{ms}^{-1}$ | \& M1

A1 \& | Or +/- 0.2(Ans(i) +/- Ans(ii)) |
| :--- |
| It is OK get -4.1 from correct work |
| Examiner's Comments |
| Was nearly always answered by subtracting the magnitudes of the momentum on landing and on lift-off. A minority of candidates used the initial speed of $3.5 \mathrm{~m} \mathrm{~s}^{-1}$ in their calculations. | \&

\hline \& \& Total \& 7 \& \&

\hline 3 \& i \& $$
v^{2}=14^{2}+2 g \times 30
$$

\[
v=28 \mathrm{~m} \mathrm{~s}^{-1}

\] \& | M1 |
| :--- |
| A1 | \& | $v^{2}=u^{2}+/-2 g s$ |
| :--- |
| Examiner's Comments |
| Parts (i) and (ii) were almost always correct although a small minority of candidates took the initial velocity to be upwards or zero and a few were confused about the sign required with g. | \& Using $v^{2}=U^{2}+2$ as

\hline \& ii \& $$
s=14 \times 0.4+g \times 0.4^{2} / 2
$$

\[
s=6.384 \mathrm{~m}

\] \& | M1 |
| :--- |
| A1 | \& Accept 6.38 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& total time. A minority were unable to solve the quadratic equation in \(t\) they had obtained. \& \\
\hline \& \& Total \& 7 \& \& \\
\hline 4 \& \(i\)
\(i\) \& \begin{tabular}{l}
\[
\begin{aligned}
\& 14^{2}=2 g h \\
\& h=10 \mathrm{~m} \\
\& 14=g t \\
\& t=1.43 \mathrm{~s}
\end{aligned}
\] \\
OR
\[
14=g t
\]
\[
t=1.43 \mathrm{~s}
\]
\[
h=0 \times 1.43+9.8 \times 1.43^{2} / 2
\]
\[
h=10(.0) \mathrm{m}
\]
\end{tabular} \& \& \begin{tabular}{l}
\[
v^{2}=u^{2}+/-2 g s \text { with } u=0
\] \\
-ve final answer AO
\[
v=u+g t \text { with } u=0
\] \\
Accept 10/7 \\
There are many alternatives, but following through of \\
wrong answer is allowed only for method marks as the \(h\) and \(t\) values can be found independently. \\
Examiner's Comments \\
Most candidates scored full marks for this part, and only a few gave only one of distance and time.
\end{tabular} \& \\
\hline \& ii
ii

ii \& $$
20^{2}=14^{2}+2 a 15
$$

$$
a=6.8 \mathrm{~m} \mathrm{~s}^{-2}
$$ \& M1

A1

A1 \& | $V^{2}=14^{2}+/-2 a s, a \neq g$ |
| :--- |
| Examiner's Comments |
| Again most candidates scored full marks. | \&

\hline \& \& Total \& 7 \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 5 \& i \& \begin{tabular}{l}
\[
\begin{aligned}
\& x=u \cos \theta t \\
\& y=u \sin \theta t-1 / 2 g t^{2}
\end{aligned}
\] \\
Eliminate t \\
Get \(y=x \tan \theta-g x^{2} \sec ^{2} \theta / 2 u^{2}\) [AG]
\end{tabular} \& B1
B1
M1

A1 \& | www |
| :--- |
| Examiner's Comments |
| Many good solutions were seen. There was very little evidence of attempts to 'fudge' the given answer. | \&

\hline \& | ii |
| :--- |
| ii |
| ii |
| ii | \& | Substitute $\mathrm{x}=22, \mathrm{y}=-2.1$ and $\mathrm{u}=14$ |
| :--- |
| Use $\sec ^{2} \theta=1+\tan ^{2} \theta$ |
| Tidy to $12.1 \tan ^{2} \theta-22 \tan \theta+10=0$ [AG] |
| Solve QE for $\tan \theta$ $\theta=42.3$ | \& M1

B1
A1
M1
M1

A1 \& | May start again of course |
| :--- |
| Www |
| allow in radians (0.738) |
| Examiner's Comments |
| The connection between this and the previous part was not always appreciated and quite a few candidates started again. The most common error was to take $y=2.1$ and some thought the trig identity to be used was $\sec ^{2} \theta=1$ $\tan ^{2} \theta$ but nevertheless still, wrongly, obtained the required result! Some candidates who could not show the given result were sensible enough to use it to find the angle. | \&

\hline \& iii \& $$
t=22 / 14 \cos \theta
$$

$$
\mathrm{t}=2.12 \mathrm{~s}
$$ \& M1

A1 \& | May work vertically, but must solve for t to get M1 |
| :--- |
| Examiner's Comments | \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \& \(17.9 \mathrm{~ms}^{-1}\) \& [4] \& Use of Pythagoras to find the speed \& 17.917589... \& \\
\hline \& d \& Model takes no account of air resistance \& \begin{tabular}{l}
E1(AO3.5b) \\
[1]
\end{tabular} \& Or any other reasonable comment, e.g. wind or rotation of the ball could affect the motion \& \& \\
\hline \& e \& State larger, with suitable explanation \& \begin{tabular}{l}
E1(AO3.5a) \\
[1]
\end{tabular} \& E.g. air resistance will slow the ball down so to achieve the given range (or time of flight, or height at the post) the initial speed would have to be higher \& \& \\
\hline \& \& Total \& 11 \& \& \& \\
\hline 7 \& i \& \[
\begin{aligned}
\& v_{x}=12 \cos 20 \\
\& 8=12 t \cos 20
\end{aligned}
\] \& *31

B1 \& | 11.27631..... |
| :--- |
| Using suvat to find expressio | \& in tonly. ($t=0.70945 .$.) \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \& ii
ii \& Attempt to solve a quadratic for \(V\)
\[
V=15.9
\] \& \begin{tabular}{l}
dep*M2 \\
A1
\end{tabular} \& \begin{tabular}{l}
SC M1 for solving for \(V^{2}\)
\[
V=15.8606 \ldots
\] \\
Examiner's Comments \\
This was well done in terms of the candidates knowing what was required, but in some cases the algebra wasn't always equal to the task. A small minority of candidates made the unfortunate assumption that the target was hit at the highest point of the trajectory.
\end{tabular} \\
\hline \& \& Total \& 12 \& \\
\hline 8 \& i \& \(\left(20 \sin \theta^{2}-2 g(2.44)=0\right.\)
\[
\theta=20.2
\] \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Use \(V^{2}=U^{2}+2\) as vertically with \(v=0\)
\[
\theta=20.22908 \ldots
\] \\
Examiner's Comments \\
This question was generally well answered by the majority of candidates.
\end{tabular} \\
\hline \& ii
ii
ii

i \& \[
$$
\begin{aligned}
& 20 \sin \operatorname{cv}(\theta t-1 / 2 g t=0 \\
& \text { AND range }=20 \operatorname{cv}(t) \cos \operatorname{cv}(\theta) \\
& \text { Range }=26.5 \mathrm{~m} \\
& \frac{20^{2} \sin (2 \times \operatorname{cv}(\theta))}{g} \\
& \text { OR } \\
& \text { Range }=26.5 \mathrm{~m}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 | \& | Use $s=u t+1 / 2 a t^{2}$ vertically with $s=0$ OR use $v=u+a t$ and doubles t AND horizontally with time found from vertical. ($\mathrm{t}=$ 1.4113... s or 1.4093...s (from 20.2)) |
| :--- |
| Range $=26.48541 \ldots \mathrm{~m}$ or $26.45387 \ldots$. (from 20.2) |
| Use of range formula |
| Range $=26.48541 \ldots \mathrm{~m}$ or $26.45387 \ldots \mathrm{~m}$ (from 20.2) |
| Examiner's Comments |
| There were two common approaches to the solution to this |

\hline
\end{tabular}

[^0]: (e)

 Explain whether an improved model would require a larger or smaller initial speed for the ball.

