1.

Find the coordinates of the points on the curve $y=\frac{1}{3} x^{3}+\frac{9}{x}$ at which the tangent is parallel to the line $y=8 x+3$.
2.

dy

Find $\mathrm{d} x$ in each of the following cases:
i. $y=\frac{(3 x)^{2} \times x^{4}}{x}$
ii. $\quad y=\sqrt[3]{x}$,
iii. $y=\frac{1}{2 x^{3}}$.
3. It is given that $\mathrm{f}(x)=\frac{6}{x^{2}}+2 x$.
i. Find $f^{\prime}(x)$.
ii. Find $f^{\prime \prime}(x)$.
4.

Given that $y=6 x^{3}+\frac{4}{\sqrt{x}}+5 x$, find
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(ii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
5. Given that $\mathrm{f}(x)=6 x^{3}-5 x$. Find
(a) $f^{\prime}(x)$,
(b) $\mathrm{f}^{\prime \prime}(2)$.
6. In this question you must show detailed reasoning.

Find the gradient of the curve $y=3 \cos 2 x$ at the point where $x=\frac{1}{8} \pi$.
7. It is given that $\mathrm{f}(x)=\left(3+x^{2}\right)(\sqrt{x}-7 x)$. Find $\mathrm{f}^{\prime}(x)$.
8. In this question you must show detailed reasoning.

Find the values of x for which the gradient of the curve $y=\frac{2}{3} x^{3}+\frac{5}{2} x^{2}-3 x+7$ is positive. Give your answer in set notation.
9. i. Solve the equation $x^{2}-6 x-2=0$, giving your answers in simplified surd form.
ii. Find the gradient of the curve $y=x^{2}-6 x-2$ at the point where $x=-5$.
10.
a. Given that $f(x)=\left(x^{2}+3\right)(5-x)$, find $f^{\prime}(x)$.
b. Find the gradient of the curve $y=x^{-\frac{1}{3}}$ at the point where $x=-8$.

Mark scheme

Question		Answer/Indicative content	Marks	Part marks and guidance	
1		$\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{-9 x^{2}}$ Gradient of line $=8$	B1	x^{2} from differentiating first term	
			M1	$k x^{-2}$	
			A1	$-9 x^{2}(\mathrm{no}+\mathrm{c})$	
			B1		
				dy	
				Equate their $\mathbf{d x}$ to 8 (or	Note: If equated to +/-1/8 then M0 but the next M1 and its
		$x^{2}-9 x^{2}=8$	M1	their gradient of line, if clear)	dependencies are available
		$x^{4}-8 x^{2}-9=0$		Use a correct substitution to obtain a 3 term quadratic	If no substitution stated and treated as a quadratic (e.g.
		$k^{2}-8 k-9=0$	*M1	or factorise into 2 brackets each containing x^{2}	quadratic formula), no more marks until square rooting seen
		9) $(k+1)=0$		Correct method to solve 3 term quadratic - dependent	SC: If spotted after first five marks-
		$(k-9)(k+1)=0$	DM1	on previous M1	$(3,12) \mathrm{B} 1$
		don't need	A1	No extras	$(-3,-12) \mathrm{B} 1$
		(dont need $k=-1$)	AT	No extras	Justifies exactly two solutions B3
		$x=3,-3$	DM1	Attempt to find x by square rooting - accept one value	
				No extras	If curve equated to line and before differentiating:
				Examiner's Comments	First four marks B1 M1 A1 B1 available as main scheme
		$y=12,-12$	A1		Then MO for equating as this not been explicitly done
				Many candidates realised what needed to be done in	Allow the M1 for the substitution
				this unstructured question and a large proportion secured the first five marks by correctly differentiating	DM1 for quadratic as main scheme (dependent on a correct substitution)

					the equation of the curve and equating this to 8 , the gradient of the line. A relatively common error at this stage was to equate to the negative reciprocal of the gradient, showing confusion regarding parallel and perpendicular gradients. The resulting disguised quadratic proved far more difficult than usual as many candidates did not recognise this out of context, as it is more usually seen as a question in its own right. Of the candidates who did realise the need to make a substitution, many did not multiply by x^{2} and incorrectly substituted y for x^{2} and y^{2} for x^{4}; they secured no more marks. Those who proceeded correctly usually factorised the simple resulting quadratic and remembered to take the square root to find x, although it was quite common to omit the -3 . Thereafter, the vast majority of successful candidates found the corresponding value(s) of y correctly, although a number erroneously substituted into the line rather than the curve. This question proved appropriately discriminating with less than a quarter of candidates scoring full marks.	AO for the 9 (as follows wrong working) DM1 for square rooting (dependent on a correct substitution) AO for the co-ordinates (as follows wrong working). Max mark 7/10
			Total	10		
2		i i	$y=9 x^{5}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=45 x^{4}$	M1 A1 B1 ft	Obtain $k x^{5}$ Correct expression for $y\left(9 x^{6}\right)$ Follow through from their single $k x^{n}, n \neq 0$. Must be simplified. Examiner's Comments Although a large number of candidates secured all three marks for this question, a lot of errors were seen in the initial stages. Most commonly, candidates forgot to square the 3 or divided both terms by x before simplifying. Candidates who obtained a single term	If individual terms are differentiated then MOAOBO $\frac{3 x^{2}+x^{4}}{x} \text { is not a misread }$ MOAOBO

9		i	$\begin{aligned} & \frac{6 \pm \sqrt{(-6)^{2}-4 \times 1 \times-2}}{2 \times 1} \\ & =\frac{6 \pm \sqrt{44}}{2} \\ & =3 \pm \sqrt{11} \end{aligned}$ OR: $\begin{aligned} & (x-3)^{2}-9-2=0 \\ & x-3= \pm \sqrt{11} \end{aligned}$ $x=3 \pm \sqrt{11}$		Valid attempt to use quadratic formula Both roots correct and simplified Correct method to complete square Rearranged to correct form cao Examiner's Comments Almost all candidates recognised from the wording of the question that factorisation was not appropriate and most opted to use the quadratic formula. Most were successful in the initial substitution but a significant number failed to deal accurately with the negative value of c. Many had difficulty simplifying the resulting surd. Some only divided the first term by 2 ; others erroneously divided $\sqrt{ } 44$ by 2 to get $\sqrt{ } 22$. Most of the candidates who attempted to complete the square were successful, although a number failed to find two roots. Overall, about 70\% of candidates secured full marks.	No marks for attempting to factorise Must get to $(x-3)$ and \pm stage for the M mark, constants combined correctly gets A1
		ii	$\begin{aligned} & \frac{d y}{d x}=2 x-6 \\ & =-16 \end{aligned}$	B1 B1	www	

				Examiner's Comments This was generally more successful than part (i). Almost all candidates correctly differentiated the expression and most accurately substituted the given value of x to get $-16 ; 85 \%$ of candidates gained both marks. The most common error was to use 5 instead of -5 .	
		Total	5		
10		$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{3} x^{-\frac{4}{3}} \\ & \text { When } x=-8 \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{3} \times(-8)^{-\frac{4}{3}} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{3} \times \frac{1}{16}=-\frac{1}{48} \end{aligned}$	M1	Attempt to differentiate i.e. $-\frac{1}{3} x^{-\frac{k}{3}}$ soi for positive integer k Fully correct $(-8)^{-\frac{4}{3}}=\frac{1}{16} \text { www Must use -8 }$ Final answer Examiner's Comments Although the differentiation required here was more demanding than that of part (a), many candidates were able to secure the first two marks. Evaluation of	$x^{-\frac{1}{3}}$ misread as $x^{\frac{1}{3}}$ earns $\max 2 / 4:$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{3} x^{-\frac{2}{3}}$ M1 A0 MR $(-8)^{-\frac{2}{3}}=\frac{1}{4} \mathbf{B 1}$ Final answer $\frac{1}{12} \mathbf{A 0} \mathbf{M R}$

				$(-8)^{-\frac{4}{3}}$proved very challenging, with many ignoring one or both minus signs, not understanding the index or making calculation errors. Even those who were successful often then made errors in finding the product of two unit fractions.		

