1. i. The first three terms of an arithmetic progression are $2 x, x+4$ and $2 x-7$ respectively. Find the value of $x$.
ii. The first three terms of another sequence are also $2 x, x+4$ and $2 x-7$ respectively.
a. Verify that when $x=8$ the terms form a geometric progression and find the sum to infinity in this case.
b. Find the other possible value of $x$ that also gives a geometric progression.
2. Sarah is carrying out a series of experiments which involve using increasing amounts of a chemical. In the first experiment she uses 6 g of the chemical and in the second experiment she uses 7.8 g of the chemical.
i. Given that the amounts of the chemical used form an arithmetic progression, find the total amount of chemical used in the first 30 experiments.
ii. Instead it is given that the amounts of the chemical used form a geometric progression. Sarah has a total of 1800 g of the chemical available. Show that $N$, the greatest number of experiments possible, satisfies the inequality

$$
1.3^{N} \leqslant 91
$$

and use logarithms to calculate the value of $N$.
3. a. The first term of a geometric progression is 50 and the common ratio is 0.8 . Use logarithms to find the smallest value of $k$ such that the value of the $k$ th term is less than 0.15 .
b. In a different geometric progression, the second term is -3 and the sum to infinity is 4 . Show that there is only one possible value of the common ratio and hence find the first term.
4. A geometric progression has first term 3 and second term - 6 .
i. State the value of the common ratio.
ii. Find the value of the eleventh term.
iii. Find the sum of the first twenty terms.
5. An arithmetic progression $u_{1}, u_{2}, u_{3}, \ldots$ is defined by $u_{1}=5$ and $u_{n+1}=u_{n}+1.5$ for $n \geqslant 1$.
i. Given that $u_{k}=140$, find the value of $k$.

A geometric progression $w_{1}, w_{2}, w_{3}, \ldots$ is defined by $w_{n}=120 \times(0.9) n-1$ for $n \geqslant 1$.
ii. Find the sum of the first 16 terms of this geometric progression, giving your answer correct to 3 significant figures.
iii. Use an algebraic method to find the smallest value of $N$ such that ${ }^{n=1}{ }^{N} u_{n}>\sum_{n=1}^{\infty} w_{n}$.
6. Business A made a $£ 5000$ profit during its first year.

In each subsequent year, the profit increased by $£ 1500$ so that the profit was $£ 6500$ during the second year, $£ 8000$ during the third year and so on.

Business B made a $£ 5000$ profit during its first year.
In each subsequent year, the profit was $90 \%$ of the previous year's profit.
(a) Find an expression for the total profit made by business A during the first $n$ years. Give your answer in its simplest form.
(b) Find an expression for the total profit made by business B during the first $n$ years. Give your answer in its simplest form.
(c) Find how many years it will take for the total profit of business A to reach $£ 385$ 000.
(d) Comment on the profits made by each business in the long term.
7. In this question you must show detailed reasoning.

It is given that the geometric series

$$
1+\frac{5}{3 x-4}+\left(\frac{5}{3 x-4}\right)^{2}+\left(\frac{5}{3 x-4}\right)^{3}+\ldots
$$

is convergent.
(a) Find the set of possible values of $x$, giving your answer in set notation.
(b) Given that the sum to infinity of the series is $\frac{2}{3}$, find the value of $x$.

8(i). The seventh term of a geometric progression is equal to twice the fifth term. The sum of the first seven terms is 254 and the terms are all positive. Find the first term, showing that it can be written in the form $p+q \sqrt{r}$ where $p, q$ and $r$ are integers.
(ii). The seventh term of a geometric progression is equal to twice the fifth term. The sum of the first seven terms is 254 and the terms are all positive. Find the first term, showing that it can be written in the form $p+q \sqrt{r_{\text {where }}} p, q$ and $r$ are integers.
9. The first term of a geometric progression is 12 and the second term is 9 .
(a) Find the fifth term.

The sum of the first $N$ terms is denoted by $S_{N}$ and the sum to infinity is denoted by $S_{\infty}$. It is given that the difference between $S_{\infty}$ and $S_{N}$ is at most 0.0096.
(b) Show that $\left(\frac{3}{4}\right)^{N} \leqslant 0.0002$
(c) Use logarithms to find the smallest possible value of $N$.
10. In this question you must show detailed reasoning.

The $n$th term of a geometric progression is denoted by $g_{n}$ and the $n$th term of an arithmetic progression is denoted by $a_{n}$. It is given that $g_{1}=a_{1}=1+\sqrt{5}, g_{3}=a_{2}$ and $g_{4}+a_{3}=0$.

Given also that the geometric progression is convergent, show that its sum to infinity is $4+2 \sqrt{5}$.
11. The table shows information about three geometric series. The three geometric series have different common ratios.

|  | First <br> term | Common <br> ratio | Number <br> of terms | Last <br> term |
| :---: | :---: | :---: | :---: | :---: |
| Series 1 | 1 | 2 | $n_{1}$ | 1024 |


| Series 2 | 1 | $r_{2}$ | $n_{2}$ | 1024 |
| :--- | :--- | :--- | :--- | :--- |
| Series 3 | 1 | $r_{3}$ | $n_{3}$ | 1024 |

(a) Find $n_{1}$.
(b) Given that $r_{2}$ is an integer less than 10 , find the value of $r_{2}$ and the value of $n_{2}$.
(c) Given that $r_{3}$ is not an integer, find a possible value for the sum of all the terms in Series 3.

## Mark scheme





(




|





|  |  | $\frac{3 x-4}{3 x-9}=\frac{2}{3} \Rightarrow x=\ldots$ | A1(AO1.1) <br> [3] | formula <br> Equate to $\frac{2}{3}$ and attempt to solve for $x$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 8 |  |  |  |
| 8 | i | $\begin{aligned} & r^{2}=2 \text { hence } r=\sqrt{2} \\ & \frac{a\left(1-\sqrt{2}^{7}\right)}{1-\sqrt{2}}=254 \end{aligned}$ $a=\frac{254(1-\sqrt{2})}{1-8 \sqrt{2}}$ $\begin{aligned} & a=\frac{254(1-\sqrt{2})(1+8 \sqrt{2})}{(1-8 \sqrt{2})(1+8 \sqrt{2})} \\ & a=\frac{254(-15+7 \sqrt{2})}{-127} \end{aligned}$ | B1 <br> M1 <br> A1 | State $r=\sqrt{ } 2$ <br> www <br> Attempt $S_{7}=$ 254 <br> Rearrange to obtain correct numerical expression for | B0 if from $\mathrm{ar}^{7}$ $=2 a r^{5}$ (but then allow all of the remaining marks) <br> Allow decimal value (1.41) <br> Allow B1 for $r$ $= \pm \sqrt{ } 2$ <br> Must be correct <br> formula, using their numerical $r$, which could be exact or a decimal value Must also equate to 254 <br> Must be in an exact form, |  |





(1)







