1. The acute angle A is such that $\tan A=2$.
i. Find the exact value of $\operatorname{cosec} A$.
ii. The angle B is such that $\tan (A+B)=3$. Using an appropriate identity, find the exact value of $\tan B$.
2. i. Express $4 \cos \theta-2 \sin \theta$ in the form $R \cos (\theta+a)$, where $R>0$ and $0^{\circ}<a<90^{\circ}$.
ii. Hence
a. solve the equation $4 \cos \theta-2 \sin \theta=3$ for $0^{\circ}<\theta<360^{\circ}$,
b. determine the greatest and least values of

$$
25-(4 \cos \theta-2 \sin \theta)^{2}
$$

as θ varies, and, in each case, find the smallest positive value of θ for which that value occurs.
3. Using an appropriate identity in each case, find the possible values of
i. $\sin a$ given that $4 \cos 2 a=\sin ^{2} a$,
ii. $\quad \sec \beta$ given that $2 \tan ^{2} \beta=3+9 \sec \beta$.
4. i. Express $5 \cos \left(\theta-60^{\circ}\right)+3 \cos \theta$ in the form $R \sin (\theta+\mathrm{a})$, where $R>0$ and $0^{\circ}<\mathrm{a}<90^{\circ}$.
[4]
ii. Hence
a. give details of the transformations needed to transform the curve $y=5 \cos \left(\theta-60^{\circ}\right)$ $+3 \cos \theta$ to the curve $y=\sin \theta$,
b. find the smallest positive value of β satisfying the equation

$$
5 \cos \left(\frac{1}{3} \beta-40^{\circ}\right)+3 \cos \left(\frac{1}{3} \beta+20^{\circ}\right)=3 .
$$

5. It is given that θ is the acute angle such that $\cot \theta=4$. Without using a calculator, find the exact value of
i. $\tan \left(\theta+45^{\circ}\right)$,
ii. $\operatorname{cosec} \theta$.
6. i. Show that $\sin 2 \theta \tan \theta+\cot \theta \equiv 2$.
ii. Hence
(a) find the exact value of $\tan \frac{1}{12} \pi+\tan \frac{1}{8} \pi+\cot \frac{1}{12} \pi+\cot \frac{1}{8} \pi$,
(b) solve the equation $\sin 4 \theta\left(\tan \theta+\cot \theta=1\right.$ for $0<\theta<\frac{1}{2} \pi$,
(C) express $(1-\cos 2 \theta)^{2}\left(\tan \frac{1}{2} \theta+\cot \frac{1}{2} \theta\right)^{3}$ in terms of $\sin \theta$.
7. It is given that A and B are angles such that

$$
\sec ^{2} A-\tan A=13 \quad \text { and } \quad \sin B \sec ^{2} B=27 \cos B \operatorname{cosec}^{2} B
$$

Find the possible exact values of $\tan (A-B)$.
8. It is given that $f(\theta)=\sin \left(\theta+30^{\circ}\right)+\cos \left(\theta+60^{\circ}\right)$.
i. Show that $f(\theta)=\cos \theta$. Hence show that

$$
f(4 \theta)+4 f(2 \theta) \equiv 8 \cos ^{4} \theta-3
$$

ii. Hence
a. determine the greatest and least values of $\frac{1}{\mathrm{f}(4 \theta)+4 \mathrm{f}(2 \theta)+7}$ as θ varies,
b. solve the equation

$$
\begin{aligned}
& \sin \left(12 a+30^{\circ}\right)+\cos \left(12 a+60^{\circ}\right)+4 \sin \left(6 a+30^{\circ}\right)+4 \cos \left(6 a+60^{\circ}\right)=1 \\
& \text { for } 0^{\circ}<a<60^{\circ} \text {. }
\end{aligned}
$$

9.

(a) Show that $\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\sin 2 \theta$
(b) In this question you must show detailed reasoning.

$$
\text { Solve } \frac{2 \tan \theta}{1+\tan ^{2} \theta}=3 \cos 2 \theta \text { for } 0 \leq \theta \leq \pi \text {. }
$$

10. (a) Express $4 \cos \theta+3 \sin \theta$ in the form $R \cos (\theta-a)$, where $R>0$ and $0^{\circ}<a<90^{\circ}$.

The temperature $\theta^{\circ} \mathrm{C}$ of a building at time t hours after midday is modelled using the equation

$$
\theta=20+4 \cos (15 t)^{\circ}+3 \sin (15 t)^{\circ}, \text { for } 0 \leq t<24
$$

(b) Find the minimum temperature of the building as given by this model.
(c) Find also the time of day when this minimum temperature occurs.
11. In this question you must show detailed reasoning.
(a) Solve the equation $\cos ^{2} x=0.25$ for $0^{\circ} \leq x<180^{\circ}$.
(b) (i) Prove that $\frac{\cos \theta}{\cos \theta-\sin \theta}-\frac{\cos \theta}{\cos \theta+\sin \theta} \equiv \tan 2 \theta$.
(ii) Hence or otherwise solve the equation

$$
\begin{equation*}
\frac{\cos \theta}{\cos \theta-\sin \theta}-\frac{\cos \theta}{\cos \theta+\sin \theta}=1 \text { for } 0^{\circ} \leqslant \theta<360^{\circ} \tag{5}
\end{equation*}
$$

12. The angle θ, where $90^{\circ}<\theta<180^{\circ}$, satisfies the equation

$$
\begin{gathered}
3 \sec ^{2} \theta+10 \tan \theta= \\
11 .
\end{gathered}
$$

(i) Find the value of $\tan \theta$.
(ii) Without using a calculator, determine the value of
(a) $\tan 2 \theta$,
(b) $\cot \left(2 \theta+135^{\circ}\right)$.
13. In this question you must show detailed reasoning.
(a)
Use the formula for $\tan (A-B)$ to show that $\tan \frac{\pi}{12}=2-\sqrt{3}$.
(b) Solve the equation $2 \sqrt{3} \sin 3 A-2 \cos 3 A=1_{\text {for }} 0^{\circ} \leq A<180^{\circ}$.
14.

It is given that the angle θ satisfies the equation $\sin \left(2 \theta+\frac{1}{4} \pi\right)=3 \cos \left(2 \theta+\frac{1}{4} \pi\right)$.
(a) Show that $\tan 2 \theta=\frac{1}{2}$.
(b) Hence find, in surd form, the exact value of $\tan \theta$, given that θ is an obtuse angle.
15.
(a)

$$
\text { By first writing } \tan 3 \theta \text { as } \tan (2 \theta+\theta) \text {, show that } \tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}
$$

(b) Hence show that there are always exactly two different values of θ between 0° and 180° which satisfy the equation
$3 \tan 3 \theta=\tan \theta+k$,
where k is a non-zero constant.
16. In this question you must show detailed reasoning.
(a) Show that $\cos A+\sin A \tan A=\sec A$.
(b) Solve the equation $\tan 2 \theta=3 \tan \theta$ for $0^{\circ} \leq \theta \leq 180^{\circ}$.

Mark scheme

Question		Answer/Indicative content	Marks	Part marks and guidanc	
1	i	Either Attempt to find exact value of $\sin A$ Obtain $\frac{1}{2} \sqrt{5}$ or $\sqrt{\frac{5}{4}}$ or exact equiv Or Attempt use of identity $1+\cot ^{2} A=\operatorname{cosec}^{2} A$ Obtain $\frac{1}{2} \sqrt{5}$ or $\sqrt{\frac{5}{4}}$ or exact equiv	M1 A1 M1 A1	using right-angled triangle or identity or ... final $\pm \frac{1}{2} \sqrt{5}$ sA0; correct answer only earns M1A1 using $\cot A=\frac{1}{2}$; allow sign error in attempt at identity final $\pm \frac{1}{2} \sqrt{5}$ sA; correct answer only earns M1A1 Examiner's Comments There were three approaches taken in attempting to find the value of cosec A. One was to consider a right-angled triangle with sides 1,2 and $\sqrt{5}$ Candidates then had little difficulty in writing down the correct answer. A second approach involved trying to use an appropriate identity and a successful outcome was not so common. Some candidates evidently knew the relevant identity or obtained it by manipulating $\sin ^{2} A+\cos ^{2} A=1$. On some scripts, $\cot ^{2} A+1=\operatorname{cosec}^{2} A$ immediately became $\cot A+1=\operatorname{cosec} A$. Other candidates proposed an incorrect identity linking cosec A and $\tan A$. A number of candidates ignored the information about A being acute and concluded with cosec $A= \pm \frac{1}{2} \sqrt{5}$, an answer that did not earn the second mark. The third approach involved resorting to calculators and giving an approximate value; no credit was allowed.	
	ii	State or imply $\frac{2+\tan B}{1-2 \tan B}=3$	B1		

	ii	Attempt solution of equation of form linear in t Obtain $\tan B=\frac{1}{7}$	M1 A1	by sound process at least as far as $k \tan B=c$ answer must be exact; ignore subsequent attempt to find angle B Examiner's Comments This was answered very well with 80\% of candidates earning all three marks. The appropriate identity was quoted and, in most cases, the steps to find the value of $\tan B$ were carried out accurately.
		Total	5	
2	i	obtain $R=\sqrt{20}_{r ~} \quad$ = 4.47 Attempt to find value of a Obtain 26.6	B1 M1 A1	implied by correct value or its complement; allow sin / cos muddles; allow use of radians for M1; condone use of $\cos a=4$, $\sin a=2$ here but not for A1 or greater accuracy $26.565 \ldots$; with no wrong working seen Examiner's Comments This routine piece of work was answered well by most candidates with 73% of them earning the three marks. The fact that the expansion of $R \cos (\theta+a)$ leads to a minus sign between the two terms confused some candidates and there were sign errors; some candidates concluded with $\sqrt{ } 20 \cos \left(\theta-26.565^{\circ}\right)$. A value of 4.47 for R was accepted here but candidates are always advised to choose exact values or values to more than 3 significant figures when further work is dependent on the values.
	ii ii	(a) Show correct process for finding one answer Obtain 21.3	M1 A1FT	allowing for case where the answer is negative or greater accuracy $21.3045 . .$. ; or anything rounding to 21.3 with no obvious error; following a wrong value of a but not wrong R

e attempting fourth quadrant value minus a value
or greater accuracy $285.5653 \ldots$; or anything rounding to 286 with no obvious error; following a wrong value of a but not wrong
R;and no others between 0° and 360°

Examiner's Comments

Many candidates had no difficulty in finding the two angles although some earlier lack of accuracy occasionally meant that the two answers were not the correct angles of 21.3° or 286°. Some candidates found the first angle correctly but then wrongly subtracted that answer from 360° to claim a second angle. A few candidates provided four answers, one in each of the four quadrants
allow if a incorrec
or greater accuracy 63.4349...; following a wrong value of a
allow if a incorrect
and clearly associated with correct least value
or greater accuracy 153.4349...; following a wrong value of a

Examiner's Comments

This proved to be a challenging request and many candidates made little or no significant progress. Some started by expanding $25-\left(4 \cos \theta-2 \sin \theta^{2}\right.$, a step that led into some involved trigonometry but no progress with the particular request. Two quite popular greatest and least values were 21 and 9 , obtained by substituting, respectively, $\theta=90^{\circ}$ and $\theta=0^{\circ}$. Candidates realising that the result from part (i) needed to be used were able to make more progress although some claimed a greatest value of 45 ; others believing that the required values would be obtained by taking $\cos (\theta+a)$ to be -1 and then +1 ended up with greatest

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& and least values both being 5 . Finding the smallest positive value of \(\theta\) associated with the two values also proved difficult; in particular the fact that the angle associated with the least value of 5 comes from \(\cos (\theta+a)=-1\) eluded many. \\
\hline \& \& Total \& 12 \& \\
\hline 3 \& \[
i
\] \& \begin{tabular}{l}
Use \(2 \cos ^{2} a-1\) or \(\cos ^{2} a-\sin ^{2} a\) or \(1-2 \sin ^{2} a\) \\
Obtain equation in which \(\sin ^{2} a\) appears once \\
Obtain \(\pm \frac{2}{3}\)
\end{tabular} \& B1
M1

A1 \& | condoning sign slips or arithmetic slips; for solution which gives equation involving $\tan ^{2} a, \mathrm{M} 1$ is not earned until valid method for reaching $\sin a$ is used; attempt involving $4\left(1-s^{2}\right)=s^{2}$ is MO $\begin{aligned} & \text { both values needed; } \pm 0.667 \text { is A0; } \pm \sqrt{\frac{4}{9}} \\ & \text { subs; ignore } \\ & \text { subsequent work to find angle(s) } \end{aligned}$ |
| :--- |
| Examiner's Comments |
| Most candidates were able to use a correct identity for cos2a and to reach an equation such as $9 \sin ^{2} a=4$. Many candidates did not conclude successfully. Some gave only the one answer $\sin \alpha=\frac{2}{3}$ and others offered $\sin a=\sqrt{\frac{4}{9}}$ or sina $= \pm \sqrt{\frac{4}{9}}$. Going further to find an angle or angles was not penalised in either part of this question. |

\hline \& ii \& | Either Attempt use of identity |
| :--- |
| Obtain $2 \sec ^{2} \beta-9 \sec \beta-5=0$ |
| Attempt solution of 3 -term quadratic in $\sec \beta$ to obtain at least one value of $\sec \beta$ |
| Obtain 5 with no errors in solution | \& M1

A1
M1

M \& | of form $\tan ^{2} \beta= \pm \sec ^{2} \beta \pm 1$ |
| :--- |
| condone absence of $=0$ |
| if factorising, factors must be such that expansion gives their first and third terms; if using formula, this must be correct for their values |
| and, finally, no other value; no need to justify rejection of $-\frac{1}{2}$ |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& ii
ii
ii
ii \& \begin{tabular}{l}
Or Attempt to express equation in terms of \(\cos \beta\) \\
Obtain \(5 \cos ^{2} \beta+9 \cos \beta-2=0\) \\
Attempt solution of 3-term quadratic and show switch at least once to a secant value \\
Obtain 5 with no errors in solution
\end{tabular} \& M1
A1

M1

A1 \& | Examiner's Comments |
| :--- |
| Some candidates showed uncertainty at the outset but most were able to reach and solve the correct equation involving $\sec \beta$. Many candidates were then content to give the two answers $-\frac{1}{2}$ and 5 . No justification for rejecting the former value was required but candidates were expected to make a clear and definite decision as to the value of $\sec \beta$. Some candidates did do a little work considering the possibility of $\cos \beta=-2$ but, often, the impossibility of solving this was not transferred into a final conclusion about the value of $\sec \beta$. |
| using identities which are correct apart maybe for sign slips |
| condone absence of $=0$ |
| if factorising, factors must be such that expansion gives their first and third terms; if using formula, this must be correct for their values and, finally, no other value; no need to justify rejection of $-\frac{1}{2}$ | \&

\hline \& \& Total \& 7 \& \&

\hline 4 \& i
i
i

i \& | Simplify to obtain $\frac{11}{2} \cos \theta+\frac{5 \sqrt{3}}{2} \sin \theta$ |
| :--- |
| Attempt correct process to find R |
| Attempt correct process to find a |
| Obtain $7 \sin (\theta+51.8)$ | \& B1

M1
M1

M \& \begin{tabular}{l}
or equiv with two terms perhaps with $\sin 60$ retained

for expression of form $a \cos \theta+b \sin \theta$

for expression of form $a \cos \theta+b \sin \theta$; condone

$\sin \alpha=\frac{11}{2}, \cos \alpha=\frac{5}{2} \sqrt{3}$

or greater accuracy 51.786...

 \&

accept decimal values

obtained after initial simplification

obtained after initial simplification
\end{tabular}

\hline \& ii \& State stretch and translation in either order \& M1 \& or equiv but using correct terminology, not move, squash, ... \& SC: if MO but one transformation completely correct, award B1 for 1/3

\hline
\end{tabular}

(

				Most candidates recognised that a stretch and a translation (although a few did refer to transform when presumably they meant translate) were needed in part (ii)(a) but the care needed to make sure that these were described accurately was not always present. In many cases, the stretch had scale factor 7 and the direction for the translation was incorrect. Presumably these candidates were assuming that the more usual request of the transformations needed to transform $y=\sin \theta$ to the more complicated curve was involved. Success in part (ii)(b) needed the link between the left-hand side of the equation and the original expression to be noted. Some candidates did proceed easily to the correct final answer but many others did not see a need to use the obtuse angle 180° 3 $\sin ^{-1} \frac{3}{7}$ to find a positive value for β Many others could make no relevant progress and attempts tended to consist of lengthy and involved trigonometric expansions.	
		Total	12		
5	i	State or imply $\tan \theta=\frac{1}{4}$ State or imply use of $\frac{\tan \theta+1}{1-\tan \theta}$ Obtain $\frac{5}{3}$ rr $1 \frac{2}{3}$ or $\frac{20}{12}$ or exact equiv	B1 B1 B1	But not unsimplified equiv (such as $\frac{5}{4} / \frac{3}{4}$ Examiner's Comments The instruction 'Without using a calculator' in this question meant that candidates were required to supply sufficient detail and this was the case with the vast majority of candidates; there were just a few cases of 4.12 appearing as the answer in part (ii). Part (i) was answered very well; there were a few candidates who	Note that both parts are to be answered without calculator so sufficient detail is needed

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& \begin{tabular}{l}
apparently did not know that \(\tan 45^{\circ}\) is 1 and occasionally the solution
\[
\tan \left(\theta+45^{\circ}\right)=\tan \theta+1=\frac{5}{4}
\] \\
was noted.
\end{tabular} \& \\
\hline \& , \& \begin{tabular}{l}
Attempt use of correct relevant identity or of right-angled triangle \\
Obtain \(\sqrt{17}\)
\end{tabular} \& M1

A1 \& | Such as $\operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta$, or $\operatorname{cosec} \theta=\frac{1}{\sin \theta}{ }_{\text {with }}$ |
| :--- |
| attempt at $\sin \vartheta$, or use of Pythagoras' theorem in right-angled triangle |
| Final answer $\pm \sqrt{17}$ earns A0 |
| Examiner's Comments |
| Part (ii) presented a few more problems and some candidates wrote down various identities, but not the crucial one, in the hope of finding a way to the value of $\operatorname{cosec} \theta$. Many candidates made efficient and concise use of the identity $\operatorname{cosec}^{2} \theta \equiv 1+\cot ^{2} \theta$; another popular approach was to use a right-angled triangle to find the length of the hypotenuse. Many candidates gave their final answer as $\pm \sqrt{17}$ and this did not earn the second mark; they were expected to note that θ was an acute angle. | \&

\hline \& \& Total \& 5 \& \&

\hline 6 \& $$
\text { ir } \begin{aligned}
& \text { i } \\
& i \\
& i \\
& i
\end{aligned}
$$

\[
i

\] \& | Use $\sin 2 \theta=2 \sin \theta \cos \theta$ |
| :--- |
| State $\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}$ or $\tan \theta+\frac{1}{\tan \theta}$ |
| Simplify using correct identities |
| Obtain 2 correctly | \& | B1 |
| :--- |
| B1 |
| M1 |
| A1 | \& | Perhaps as part of expression |
| :--- |
| AG; necessary detail needed | \& | Note that going directly from |
| :--- |
| $2 \sin ^{2} \theta+2 \cos ^{2} \theta$ to 2 is MO but $2\left(\sin ^{2} \theta+\right.$ |
| $\cos ^{2} \theta$ to 2 is M1A1 |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& \begin{tabular}{l}
the identity and readily appreciated that the value was
\[
\frac{2}{\sin \frac{1}{6} \pi}+\frac{2}{\sin \frac{1}{4} \pi}
\] \\
the required exact value followed. \\
Some candidates answered part (b) in just a few lines, rewriting the equation as \(2 \sin 2 \theta \cos 2 \theta(\tan \theta+\cot \theta)=1\) and using the identity to reach the equation \(4 \cos 2 \theta=1\) followed by the value of \(\theta\). Many candidates though clearly believed that the equation could not be solved the equation was expressed in terms of \(\sin \theta\) or \(\cos \theta\), involved attempts followed using various identities and sometimes the attempt was concluded correctly. \\
Only \(21 \%\) of the candidates answered part (c) correctly but it was pleasing to note neat and elegant solutions such as \((1-\cos 2 \theta)^{2}\) \(\left(\tan \frac{1}{2} \theta+\cot \frac{1}{2} \theta^{3}=4 \sin ^{4} \theta \tan \frac{1}{2} \theta+\cot \frac{1}{2} \theta \theta^{3}=4 \sin \theta \sin \theta \tan \frac{1}{2}\right.\) \(\left.\theta+\cot \frac{1}{2} \theta\right]^{3}\) and the use of the identity reduces this to \(4 \sin \theta \times\) \(2^{3}\) and therefore \(32 \sin \theta\).
\end{tabular} \& \\
\hline \& \& Total \& 12 \& \& \\
\hline 7 \& \& \begin{tabular}{l}
Use identity \(\sec ^{2} A=1+\tan ^{2} A\) \\
Attempt solution of three-term quadratic equation to obtain two values of \(\tan A\) \\
Obtain \(\tan A=-3\) and \(\tan A=4\) \\
Use correct identities to produce equation in \(\tan B\) only \\
State \(\tan B=3\)
\end{tabular} \& B1
M1

d

A1
M1

A1 \& \begin{tabular}{l}
Implied if correct values obtained; allow M1 for incorrect factorisation provided expansion would give correct first and third terms; allow M1 for incorrect use of formula if only one error present

And no others; implied by $A=\tan ^{-1}-3$ and $\tan ^{-1} 4$;

Equation might be $\beta=27 \ldots$

And no others

 \&

$A=-3,4$ is AO here unless subsequent work shows values used correctly

\ldots or $t+\beta-27 t-27=0$
\end{tabular}

\hline
\end{tabular}

Substitute at least one pair of non-zero numerical values into $\frac{\tan A-\tan B}{1+\tan A \tan B}$ Obtain one of $\frac{1}{13}$ and $\frac{3}{4}$ or exact equiv

Must be the correct identity

And no others

Examiner's Comments

This unstructured question on trigonometry did present more problems to candidates. A fewstruggled to make any significant progress but the vast majority did realise that they needed to find values of $\tan A$ and $\tan B$. The first equation was the more familiar one and most candidates applied an identity and found the two possible values of $\tan A$ without difficulty. A few candidates went further than necessary and found possible values of the angle A.

The second equation was of a less familiar type and many candidates embarked on involvedand lengthy attempts. The appearance of $\sec ^{2} B$ and $\operatorname{cosec}^{2} B$ prompted their replacement by $1+\tan ^{2} B$ and $1+\cot ^{2} B$ respectively. In some cases this led to the correct equation $\tan ^{5} B+\tan ^{3} B-27 \tan ^{2} B-27=0$ but solution of this equation was beyond most candidates. Those candidates who paused to consider the nature of the second
equation in the question observed that replacement of $\sec ^{2} B$ by 1 \qquad
$\cos ^{2} B$ and of ossecc $B b y \sin ^{2} B$ offered a more
promising approach. Many were able to reach $\tan ^{3} B=27$ easily but there were also puzzling cases where an obvious next step was not taken; for example, candidates reaching the equation $\tan ^{2} B=\frac{27}{\tan B}$

				There were errors in reaching the value of $\tan B$ too with values $\pm 3,3 \sqrt{\mathbf{3}}$ and 27 appearing not infrequently. The identity for $\tan (A-B)$ is given in the List of Formulae but care must be taken with signs. Candidates with the correct values for $\tan A$ and $\tan B$ were usually able to conclude the question successfully. There were a few cases where actual angles were used. There were also a few attempts such as $\tan (A-B)=\tan (4$ $-3)=\tan 1$ which revealed a basic lack of understanding. Full marks for Question 4 were recorded by 40% of the candidates.	
		Total	8		
8		Use at least one addition formula accurately Obtain $\cos \theta$ State $\cos 4 \theta=2 \cos ^{2} 2 \theta-1$ Attempt correct use of relevant formulae to express in terms of $\cos \theta$ Obtain correct unsimplified expression in terms of $\cos \theta$ only Simplify to confirm $8 \cos ^{4} \theta-3$	M1 A1 B1 M1 A1 A1	Without substituting values for $\cos 30^{\circ}$, etc. yet AG; necessary detail needed Or $\cos 4 \theta=\cos ^{2} 2 \theta-\sin ^{2} 2 \theta$ Or in terms of $\cos \theta$ and $\sin \theta$ e.g. $2\left(2 c^{2}-1\right)^{2}-1+4\left(2 c^{2}-1\right)$ AG; necessary detail needed Examiner's Comments This question contained challenges for even the best candidates and only 13% of the candidates recorded all thirteen marks. The first two marks of part (i) were obtained by most but convincing and concise responses to the subsequent proof were not so common. Many candidates did not take the trouble to present solutions in such a way that they were easy to follow, or indeed to read. On some scripts, it was often difficult for examiners to decide whether candidates had written $\cos 2 \theta$ or $\cos ^{2} \theta$. In other cases, parts of the proof were scattered around the page and efforts to reassemble the parts did not always succeed. The main difficulty was dealing with $\cos 4 \theta$. Some decided that, since $\cos 2 \theta$	

	b	$\tan 2 \theta=1$ $2 \theta=45^{\circ}$ (b) or $2 \theta=225^{\circ}$ or 405° or 585° $\theta=22.5^{\circ} \text { or } 112.5^{\circ}$ or 202.5° or 292.5°	M1 (AO 3.1a) A1(AO 1.1a) A1(AO 1.1) A1(AO 1.1) A1(AO 3.2a) [5]	At least two Both Both	
		Total	11		
12	i	Use identity $\sec ^{2} \theta=1+\tan ^{2} \theta$ Attempt solution of 3-term quadratic equation in $\tan \theta$ Obtain at least $\tan \theta=-4$ from the correct equation	B1 M1 A1	Identity must be used not merely quoted If using factorisation, M1 earned if their factors correct; if using formula, M1 earned if substitution of their values into correct formula correct; for incorrect equation and two values produced with no working, check that values are correct given their equation so that M1 can be awarded Ignore second value given provided no error at this stage is involved; so $\frac{2}{3}$ and -4 is A1, -4 only is A1, $\frac{2}{3}$ Jnly is AO, $\frac{3}{2}$ and -4 is AO ; allow solution such as $y=-4$ when clear that y is $\tan \theta$; ignore subsequent work with angles Examiner's Comments	

				determine the exact value of $\tan \theta$ given that θ is an obtuse angle. A full solution needed the explicit realisation that since $-2+\sqrt{5}>0 \tan \theta=-2+\sqrt{5}_{\text {would not }}$ give an obtuse angle and therefore the only valid solution was $\tan \theta=-2-\sqrt{5}$			
		Total	8				
15	a	$\begin{aligned} & \frac{\tan 2 \theta+\tan \theta}{1-\tan 2 \theta \tan \theta} \\ & =\frac{\frac{2 \tan \theta}{1-\tan ^{2} \theta}+\tan \theta}{1-\frac{2 \tan \theta}{1-\tan ^{2} \theta} \tan \theta} \\ & =\frac{2 \tan \theta+\tan \theta\left(1-\tan ^{2} \theta\right)}{\left(1-\tan ^{2} \theta\right)-2 \tan ^{2} \theta} \\ & =\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta} \end{aligned}$	B1 (AO 2.1) B1(AO 2.1) M1(AO 2.1) A1(AO 2.1)	Correct expression Correct expression in terms of $\tan \theta$ Attempt to simplify Complete proof to show given identity convincingly	As far as clearing fractions		
	b	$\begin{aligned} & 3 \times \frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}=\tan \theta+k \\ & 9 \tan \theta-3 \tan ^{3} \theta=(\tan \theta+k)\left(1-3 \tan ^{2} \theta\right) \\ & 9 \tan \theta-3 \tan ^{3} \theta=\tan \theta-3 \tan ^{3} \theta+k-3 k \tan ^{2} \theta \\ & 3 k \tan ^{2} \theta+8 \tan \theta-k=0 \end{aligned}$	$\begin{gathered} \text { M1 (AO } \\ \text { 3.1a) } \end{gathered}$	Equate and attempt to rearrange			

		$b^{2}-4 a c=64+12 k^{2}$ $k^{2} \geq 0$, so $64+12 k^{2}>0$ so equation will always have two distinct roots $\tan \theta=c$ will always give one value for θ, which will be between 0° and 90° for $c>0$ and between 90° and 180° if $c<0$ so two distinct roots for $\tan \theta$ will always give two values for θ between 0° and 180°	A1(AO 1.1) A1FT(AO 3.1a) M1 (AO 2.2a) A1(AO 2.4) [5]	Correct 3 term quadratic Correct discriminant FT their 3 term quadratic in $\tan \theta$ Consider sign of correct discriminant and hence number of roots Conclude by justifying two values for θ	Could be within quadratic formula Discriminant must be correct	
		Total	9			
16	a	DR $\cos A+\sin A \tan A$ $\begin{aligned} & =\cos A+\sin A \frac{\sin A}{\cos A} \\ & =\frac{\cos ^{2} A+\sin ^{2} A}{\cos A} \\ & =\frac{1}{\cos A} \quad(=\sec A \mathrm{AG}) \end{aligned}$	M1 (AO 1.1a) M1 (AO 1.1) A1 (AO 2.2a)	or $\begin{aligned} & \cos ^{2} A+\sin ^{2} A=1 \\ & \Rightarrow \cos A+\frac{\sin ^{2}}{\cos } \\ & \Rightarrow \cos A+\sin A \\ & (\Rightarrow \cos A+\sin A \text { ta } \\ & \mathrm{AG}) \end{aligned}$	$\begin{aligned} & \frac{A}{A}=\frac{1}{\cos A} \\ & \frac{\sin A}{\cos A}=\sec A \\ & \operatorname{an} A=\sec A \end{aligned}$	

