1.

A curve has an equation which satisfies $\frac{\mathrm{d} y}{\mathrm{~d} x}=k x(2 x-1)_{\text {for all values of } x \text {. The point } P(2,7) \text { lies }}$ on the curve and the gradient of the curve at P is 9 .
i. Find the value of the constant k.
ii. Find the equation of the curve.
2.
i. Find the binomial expansion of $\left(x^{3}+\frac{2}{x^{2}}\right)^{4}$, simplifying the terms.
ii. Hence find $\int\left(x^{3}+\frac{2}{x^{2}}\right)^{4} \mathrm{~d} x$.
3.
(a) It is given that $y=x^{2}+3 x$.
(i) Find $\frac{d y}{d x}$
(ii) Find the values of x for which y is increasing.
(b) Find $\int(3-4 \sqrt{x}) \mathrm{d} x$

Mark scheme

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& ii \& \& A1 \& Obtain \(y=x^{3}-0.75 x^{2}+2\) \& \begin{tabular}{l}
Coefficients now need to be simplified (0.75 or \(3 / 4\)) \\
Must be an equation ie \(y=\ldots\), so AO for ' \(\mathrm{f}(\mathrm{x})=\ldots\). ' or 'equation \(=\) ...' \\
Allow aef, such as \(4 y=4 x^{3}-3 x^{2}\) \(+8\) \\
Examiner's Comments \\
Most candidates also scored full marks on this part of the question, although some spoiled an otherwise correct solution by failing to write the final answer as an equation. Whilst the majority of candidates recognised the need to integrate and could attempt to do so, a surprising number then stopped at this point and made no attempt to evaluate \(c\). There were a few candidates who, upon seeing the request to find an equation, immediately attempted to use \(y\) \(=m x+c\) without first considering whether a linear function was involved. The majority of candidates appreciated the need to first expand the bracket, but it was disappointing that, at this level, some were unable to do so accurately.
\end{tabular} \\
\hline \& \& Total \& 7 \& \& \\
\hline 2 \& i

i \& $$
\begin{aligned}
& \left(x^{3}\right)^{4}+4\left(x^{3}\right)^{3}\left(2 x^{-2}\right)+6\left(x^{3}\right)^{2}\left(2 x^{-2}\right)^{2} \\
& +4\left(x^{3}\right)\left(2 x^{-2}\right)^{3}+\left(2 x^{-2}\right)^{4}
\end{aligned}
$$

\[
$$
\begin{aligned}
& =x^{12}+8 x^{7}+24 x^{2}+32 x^{-3}+ \\
& 16 x^{-8}
\end{aligned}
$$

\] \& M1* \& Attempt expansion - products of powers of x^{3} and $2 x^{2}$ \& | Must attempt at least 4 terms Each term must be an attempt at a product, including binomial coeffs if used |
| :--- |
| Allow M1 if no longer $2 x^{-2}$ due to index errors |
| Allow M1 for no, or incorrect, binomial coeffs Powers of x^{3} and $2 x^{-2}$ must be intended to sum to 4 within each term (allow slips if intention correct) |
| Allow M1 even if powers used incorrectly with $2 x^{-2}$ ie only applied to x^{2} and not to 2 as well |
| Allow M1 for expansion of |

\hline
\end{tabular}

© OCR 2017.

