1. The functions f and g are defined for all real values of x by

$$
f(x)=x^{2}+4 a x+a^{2} \text { and } g(x)=4 x-2 a
$$

where a is a positive constant.
i. Find the range of f in terms of a.
ii. Given that $\mathrm{fg}(3)=69$, find the value of a and hence find the value of x such that $\mathrm{g}^{-1}(x)=x$.
2. The functions f and g are defined as follows:

$$
f(x)=2+\ln (x+3) \text { for } x \geqslant 0,
$$

$g(x) a x^{2}$ for all real values of x, where a is a positive constant.
i. Given that $g f\left(e^{4}-3\right)=9$, find the value of a.
ii. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1}.
iii. Given that $\mathrm{ff}\left(\mathrm{e}^{N}-3\right)=\ln \left(53 e^{2}\right)$, find the value of N.
3. The functions f and g are defined for all real values of x by

$$
f(x)=|2 x+a|+3 a \text { and } g(x)=5 x-4 a
$$

where a is a positive constant.
i. State the range of f and the range of g.
ii. State why f has no inverse, and find an expression for $\mathrm{g}^{-1}(x)$.
iii. Solve for x the equation $\operatorname{gf}(x)=31 a$.
4.

The function f is defined as $\mathrm{f}(x)=\frac{8}{x+2}$ for $x \geqslant 0$.
(a) State the range of f.
(b) Find an expression for $f^{-1}(x)$.
(c) Solve the equation $f(x)=f^{-1}(x)$.
5. A sequence of three transformations maps the curve $y=\ln x$ to the curve $y=\mathrm{e}^{3 x}-5$. Give details of these transformations.
6. The function f is defined for all real values of x as $f(x)=c+8 x-x^{2}$, where c is a constant.
(a) Given that the range of f is $f(x) \leq 19$, find the value of c.
(b) Given instead that $\mathrm{ff}(2)=8$, find the possible values of c.
7. In this question you must show detailed reasoning.

The functions f and g are defined for all real values of x by

$$
f(x)=x^{3} \text { and } g(x)=x^{2}+2
$$

(a) Write down expressions for

$$
\text { (i) } f g(x) \text {, }
$$

(ii) $\operatorname{gf}(x)$.
(b) Hence find the values of x for which $f g(x)-g f(x)=24$.

Mark scheme

Question		Answer/Indicative content	Marks	Guidance
1	i	Attempt completion of square at least as far as $(x+2 a)^{2}$ or differentiation to find stationary point at least as far as linear equation involving two terms Obtain $(x+2 a)^{2}-3 a^{2}$ or $\left(-2 a,-3 a^{2}\right)$ Attempt inequality involving appropriate y-value State $y \geq-3 a^{2}$ or $\mathrm{f}(x) \geq-3 a^{2}$	*M1	or equiv but amust be present dep * M ; allow $<,>$ or \leq here; allow use of x, or unsimplified equiv now with \geq; here $x \geq-3 a^{2}$ is A0 Examiner's Comments This apparently straightforward request was not answered well and 52% of candidates scored no marks. Whether the poor response was due to lack of knowledge of range or to the presence of the indeterminate constant a was not clear. Some candidates attempted to complete the square but this was not always done well and many did not know how to deduce the range from their version. The other popular approach involved differentiation; again candidates were not sure how to conclude and it was common for differentiation to lead to $x=-2 a$ with a consequent statement that the range was $x>-2 a$. An error that was seen many times in attempts to find the stationary point was $f^{\prime}(x)=2 x+4 a+2 a$.
	ii	Attempt composition of f and g the right way round	*M1	algebraic or (part) numerical; need to see $4 x-2$ a replacing x at least once
	ii	Obtain or imply $16 x^{2}-3 a^{2}$ or $144-3 a^{2}$	A1	or less simplified equiv but with at least the brackets expanded correctly
	ii	Attempt to find a from $\mathrm{fg}(3)=69$	M1	dep *M
	ii	Obtain at least $a=5$	A1	
	ii	Attempt to solve $4 x-10=x \frac{1}{4}(x+10)=x_{\text {วr }}$ $4 x-10=\frac{1}{4}(x+10)$	M1	for their a; must be linear equation in one variable; condone sign slip in finding inverse of g
	ii	Obtain $\frac{10}{3}$	A1	and no other answer Examiner's Comments In contrast to part (i), this part was answered well with 45% of candidates earning all six marks. Many more earned four or five marks, only faltering towards the end of their solutions. The vast majority formed the composition of the functions the right way round and generally coped well with the algebraic simplification. There were some slips and a few equated $\mathrm{fg}(3)$ to 0 rather than to 69 but most reached $a^{2}=25$ without too much trouble. There was no penalty at this stage for stating $a= \pm 5$. neat use of $\mathrm{f}(x)$ in its completed square form to produce $\mathrm{Fg}(x)=\mathrm{f}(4 x-2 a)=(4 x-2 a+2 a)^{2}-3 a^{2}=16 x^{2}-3 a^{2}$ was

© OCR 2017.
Page 5 of 11

iii	Or Apply their g^{-1} to 31 a	M1	
iii	Obtain $\|2 x+a\|+3 a=7 a$ or equivEither Solve $2 x+a=4 a$ and obtain $\frac{3}{2} a$	A1B1 FT	
iii			Following their $\|2 x+a\|=k a$
iii	Solve linear equation in which signs of (their) $2 x$ and (their) $4 a$ are different	M1	Condone other sign slips
iii	$\text { Obtain }-\frac{5}{2} a$	A1	And no others; obtaining $-\frac{5}{2} a_{\text {and then concluding }} \frac{5}{2} a$ is A0
iii	Or Square both sides and obtain $4 x^{2}+4 a x-15 a^{2}=0$ Solve 3-term quadratic equation to obtain two values	B1 FT	Following their $\|2 x+a\|=k a$
		M1	Allow M1 if factorisation wrong but expansion gives correct first and third terms; allow M1 if incorrect use of formula involves only one error
			And no others; continuing from two correct answers to conclude $\frac{5}{2} a, \quad \frac{3}{2} a_{\text {is AO }}$
			Examiner's Comments
			Identifying the range of f was not done well and $f(x) \geq 4$ a was a common wrong response. Candidates generally had more idea with g although some found it difficult to express their answer clearly. Provided the answer conveyed the idea of all real numbers, the mark was earned. The answer $-\infty \leq g(x) \leq \infty$ was frequently offered and accepted. But answers clearly referring to values of x were not accepted.
iii	$\text { Obtain }-\frac{5}{2} a, \quad \frac{3}{2} a$	A1	The vast majority of candidates earned 2 marks in part (ii) for finding the inverse of g ; the only errors to occur with any frequency were sign slips. The mark for explaining why f has no inverse was not earned so easily. A statement that f is not $1-1$ or that f is many - one was sufficient to earn the mark. But, in some cases, there was confusion between many - one and one - many. Some responses were contradictory: f is a one - many function, i.e. one value of y gives many values of x. There were also many comments saying that f has no inverse because of the modulus or that f has no inverse because it cannot be reflected in the line $y=x$.
			There was good work seen in response to part (iii) with half of the candidates earning all the marks. The composition of the two functions was almost always carried out the right way round. Dealing with $\mid 2 x+$ a\| presented some problems. A few candidates immediately replaced it with $(2 x+a)^{2}$; others treated the modulus signs as brackets and proceeded to solve $5(2 x+4 a)-4 a=31 a$, an approach which does give one of the solutions of the equation. For those candidates reaching the stage $\|2 x+a\|=4 a$, it was encouraging to note that the majority proceeded without fuss to solve the two linear equations $2 x+$ $a=4 a$ and $2 x+a=-4 a$. Those opting to square both sides of $\|2 x+a\|$ $=4 a$ did not fare so well, not always being able to cope with the quadratic equation involving both x and a. A few candidates mistakenly decided to reject the answer $-\frac{5}{2} a_{\text {at the end, apparently believing }}$

(

