1. A and B are two points on a line of greatest slope of a plane inclined at 45° to the horizontal and $A B=2 \mathrm{~m}$. A particle P of mass 0.4 kg is projected from A towards B with speed $5 \mathrm{~m} \mathrm{~s}^{-1}$. The coefficient of friction between the plane and P is 0.2 .
i. Given that the level of A is above the level of B, calculate the speed of P when it passes through the point B, and the time taken to travel from A to B.
ii. Given instead that the level of A is below the level of B,
a. show that P does not reach B,
b. calculate the difference in the momentum of P for the two occasions when it is at A.
2.

A and B are points at the upper and lower ends, respectively, of a line of greatest slope on a plane inclined at 30° to the horizontal. M is the mid-point of $A B$. Two particles P and Q, joined by a taut light inextensible string, are placed on the plane at A and M respectively. The particles are simultaneously projected with speed $0.6 \mathrm{~ms}^{-1}$ down the line of greatest slope (see diagram). The particles move down the plane with acceleration $0.9 \mathrm{~ms}^{-2}$. At the instant 2 s after projection, P is at M and Q is at B. The particle Q subsequently remains at rest at B.
i. Find the distance $A B$.

The plane is rough between A and M, but smooth between M and B.
ii. Calculate the speed of P when it reaches B.
P has mass 0.4 kg and Q has mass 0.3 kg .
iii. By considering the motion of Q, calculate the tension in the string while both particles are moving down the plane.
iv. Calculate the coefficient of friction between P and the plane between A and M.
3.

A block B is placed on a plane inclined at 30° to the horizontal. A particle P of mass 0.6 kg is placed on the upper surface of B. The particle P is attached to one end of a light inextensible string which passes over a smooth pulley fixed to the top of the plane. A particle Q of mass 0.5 kg is attached to the other end of the string. The portion of the string attached to P is parallel to a line of greatest slope of the plane, the portion of the string attached to Q is vertical and the string is taut. The particles are released from rest and start to move with acceleration $1.4 \mathrm{~m} \mathrm{~s}^{-2}$ (see diagram). It is given that B is in equilibrium while P moves on its upper surface.
i. Find the tension in the string while P and B are in contact.
ii. Calculate the coefficient of friction between P and B.
iii. Given that the weight of B is 7 N , calculate the set of possible values of the coefficient of friction between B and the plane.
4. A particle P of weight 8 N rests on a horizontal surface. A horizontal force of magnitude 3 N acts on P, and P is in limiting equilibrium.
i. Calculate the coefficient of friction between P and the surface.
ii. Find the magnitude and direction of the contact force exerted by the surface on P.
[4]
iii.

The initial 3 N force continues to act on P in its original direction. An additional force of magnitude $T \mathrm{~N}$, acting in the same vertical plane as the 3 N force, is now applied to P at an angle of θ° above the horizontal (see diagram). P is again in limiting equilibrium.
a. Given that $\theta=0$, find T.
b. Given instead that $\theta=30$, calculate T.
5.

$A B$ and $B C$ are lines of greatest slope on a fixed triangular prism, and M is the mid-point of $B C . A B$ and $B C$ are inclined at 30° to the horizontal. The surface of the prism is smooth between A and B, and between B and M. Between M and C the surface of the prism is rough. A small smooth pulley is fixed to the prism at B. A light inextensible string passes over the pulley. Particle P of mass 0.3 kg is fixed to one end of the string, and is placed at A. Particle Q of mass 0.4 kg is fixed to the other end of the string and is placed next to the pulley on $B C$. The particles are released from rest with the string taut. P begins to move towards the pulley, and Q begins to move towards M (see diagram).
i. Show that the initial acceleration of the particles is $0.7 \mathrm{~m} \mathrm{~s}^{-2}$, and find the tension in the string.

The particle Q reaches $M 1.8 \mathrm{~s}$ after being released from rest.
ii. Find the speed of the particles when Q reaches M.

After Q passes through M, the string remains taut and the particles decelerate uniformly. Q comes to rest between M and $C 1.4$ s after passing through M.
iii. Find the deceleration of the particles while Q is moving from M towards C.
iv.
a. By considering the motion of P, find the tension in the string while Q is moving from M towards C.
b. Calculate the magnitude of the frictional force which acts on Q while it is moving from M towards C.
6. A particle P of mass 0.4 kg is at rest on a horizontal surface. The coefficient of friction between P and the surface is 0.2 . A force of magnitude 1.2 N acting at an angle of θ° above the horizontal is then applied to P. Find the acceleration of P in each of the following cases:
i. $\quad \theta=0$;
ii. $\quad \theta=20$;
iii. $\theta=70$;
iv. $\theta=90$.
7. Three forces act on a particle. The first force has magnitude $P \mathrm{~N}$ and acts horizontally due east. The second force has magnitude 5 N and acts horizontally due west. The third force has magnitude $2 P \mathrm{~N}$ and acts vertically upwards. The resultant of these three forces has magnitude 25 N .
i. Calculate P and the angle between the resultant and the vertical.

The particle has mass 3 kg and rests on a rough horizontal table. The coefficient of friction between the particle and the table is 0.15 .
ii. Find the acceleration of the particle, and state the direction in which it moves.
8. A body of mass 20 kg is on a rough plane inclined at angle a to the horizontal. The body is held at rest on the plane by the action of a force of magnitude $P \mathrm{~N}$ acting up the plane in a direction parallel to a line of greatest slope of the plane. The coefficient of friction between the body and the plane is μ.
(a) When $P=100$, the body is on the point of sliding down the plane. Show that $g \sin \alpha=g \mu \cos \alpha+5$.
(b) When P is increased to 150 , the body is on the point of sliding up the plane. Using this and your answer to part (a), find an expression for a in terms of g.
9. Particle A, of mass $m \mathrm{~kg}$, lies on the plane $\Gamma 1$ inclined at an angle of $\tan ^{-1} \frac{3}{4}$ to the horizontal. Particle B, of $4 m \mathrm{~kg}$, lies on the plane $\Pi 2$ inclined at an angle of $\tan ^{-1} \frac{4}{3}$ to the horizontal. The particles are attached to the ends of a light inextensible string which passes over a smooth pulley at P. The coefficient of friction between particle A and $\Pi 1$ is image and plane $/ 72$ is smooth. Particle A is initially held at rest such that the string is taut and lies in a line of greatest slope of each plane.
This is shown on the diagram below.

(a)

Show that when A is released it accelerates towards the pulley at $\frac{7 g}{15} \mathrm{~ms}^{-2}$.
(b) Assuming that A does not reach the pulley, show that it has moved a distance of $\frac{1}{4} \mathrm{~m}$ when its speed is $\sqrt{\frac{7 g}{30}} \mathrm{~ms}^{-1}$.
10. A particle P of weight W lies on the surface of a rough plane which is inclined at an angle a to the horizontal, where $\tan \alpha=\frac{4}{3}$. The coefficient of friction between the particle and the plane is $\frac{1}{2} \cdot$ A horizontal force of magnitude H is applied to P. This force acts in the vertical plane
through a line of greatest slope. It is given that H is the greatest value for which Premains in equilibrium.
(a) Indicate on a diagram the forces acting on P.
(b) Show that $H=\frac{11}{2} W$.

The horizontal force acting on P is now removed.
(c) Find the acceleration of P in terms of g.

A particle P of mass 0.4 kg is attached to one end of a light inextensible string. The string passes over a small smooth fixed pulley, and a particle Q of mass 0.1 kg is attached to the other end of the string. Pests in limiting equilibrium on a horizontal surface which is 0.4 m below the pulley, with the string taut and in the same vertical plane as P, Q and the pulley. P is 0.5 m from the pulley (see diagram).
(i) Calculate the coefficient of friction and the magnitude of the contact force exerted on P (i) by the surface.
Q is now moved to the position on the surface below the pulley such that the portion of the string attached to Q is vertical. Phangs freely below the pulley and the portion of the string attached to P is vertical. Both particles are at rest when Q is released.
(ii) Find the acceleration of the particles and the tension in the string while P is descending.
P strikes the surface and remains at rest. Q comes to instantaneous rest immediately before reaching the pulley.
(iii) Find the length of the string.
12. One end of a light inextensible string is attached to a particle A of mass $m \mathrm{~kg}$. The other end of the string is attached to a second particle B of mass $\lambda \mathrm{m} \mathrm{kg}$, where λ is a constant. Particle A is in contact with a rough plane inclined at 30° to the horizontal. The string is taut and passes over a small smooth pulley P at the top of the plane. The part of the string from A to P is
parallel to a line of greatest slope of the plane. The particle B hangs freely below P (see diagram).

The coefficient of friction between A and the plane is μ.
(a) It is given that A is on the point of moving down the plane.
(i) Find the exact value of μ when $\lambda=\frac{1}{4}$.
(ii) Show that the value of λ must be less than ${ }^{\frac{1}{2}}$.
(b) Given instead that $\lambda=2$ and that the acceleration of A is $\frac{1}{4} g \mathrm{~ms}^{-2}$, find the exact [5]
value of μ.

Two particles P and Q, with masses 2 kg and 8 kg respectively, are attached to the ends of a light inextensible string. The string passes over a small smooth pulley which is fixed at a point on the intersection of two fixed inclined planes. The string lies in a vertical plane that contains a line of greatest slope of each of the two inclined planes. Plane Π_{1} is inclined at an angle of 30° to the horizontal and plane Π_{2} is inclined at an angle of θ to the horizontal. Particle P is on Π_{1} and Q is on Γ_{2} with the string taut (see diagram).
Π_{1} is rough and the coefficient of friction between P and Π_{1} is $\frac{\sqrt{3}}{3}$.
Π_{2} is smooth.
The particles are released from rest and P begins to move towards the pulley with an acceleration of
$g \cos \theta \mathrm{~m} \mathrm{~s}^{-2}$.
(a) Show that θ satisfies the equation

$$
4 \sin \theta-5 \cos \theta=1
$$

(b) By expressing $4 \sin \theta-5 \cos \theta$ in the form $R \sin (\theta-a)$, where $R>0$ and $0>a>90^{\circ}$, find, correct to 3 significant figures, the tension in the string.
14.

A and B are points at the upper and lower ends, respectively, of a line of greatest slope on a plane inclined at 30° to the horizontal. The distance $A B$ is 20 m . M is a point on the plane between A and B. The surface of the plane is smooth between A and M, and rough between M and B.

A particle P is projected with speed $4.2 \mathrm{~ms}^{-1}$ from A down the line of greatest slope (see diagram). Pmoves down the plane and reaches B with speed $12.6 \mathrm{~ms}^{-1}$. The coefficient of friction between P and the rough part of the plane is $\frac{\sqrt{3}}{6}$.
(a) Find the distance $A M$.
(b) Find the angle between the contact force and the downward direction of the line of greatest slope when P is in motion between M and B.

Mark scheme

Question		Answer/Indicative content	Marks	Part marks and guidance	
1	i	$\begin{aligned} & \mathrm{Fr}=0.2 \times 0.4 g \cos 45 \\ & 0.4 a=0.4 g \sin 45-0.554(37 . .) \quad(=2.21748 . .) \\ & a=5.54(37 . .) \\ & v^{2}=5^{2}+2 \times 5.54 \times 2 \\ & v=6.87 \mathrm{~m} \mathrm{~s}^{-1} \\ & 6.87=5+5.54 t \\ & t=0.337 \mathrm{~s} \end{aligned}$	M1 M1 A1 M1 A1 M1 A1	$\operatorname{Fr}=0.554(37 . .)$ N2L, their Fr value and cmpt wt, opposite signs May be implied $V^{2}=U^{2}+2 a s, a$ is not $0.2 g .0<a<g$. Consistent signs $2=5 t+5.54 f / 2, a \text { is not } 0.2 g .0<a<g$ Examiner's Comments This was well answered in the main, but candidates who found that P had an acceleration down the plane greater than g did not look for an error in their calculation. There were a significant number of scripts in which only one of v or t were found.	
	ii ii ii	$\begin{aligned} & \text { (a) }+/-0.4 a=-0.4 g \sin 45-0.55437 \quad(=3.3262 . .) \\ & a=+/-8.31(557 . .) \\ & 0^{2}=5^{2}-2 \times 8.32 \times s \\ & s=1.5(0) \text { (so does not reach B) } \end{aligned}$ $O R$ $v^{2}=5^{2}-2 \times 8.32 \times 2$ $v^{2}=-\mathrm{ve}(-8.28)$ so does not reach B	M1 A1 A1 A1	N2L, Fr and cmpt wt same sign (accept +ve) Accept +ve value $5^{2}=2 \times 8.32 \times s, a$ is not g or $0.2 g$. Consistent signs. cso Some comment on impossibility Examiner's Comments	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& ii
ii

ii \& \begin{tabular}{l}
(b) $v^{2}=2 \times 5.54(37) \times 1.5$

$v=+/-4.08$

Momentum change $=+/-0.4(4.08+5)$

Change $=+/-3.63 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$

 \&

M1*

A1

D*M1

A1

 \&

There was a noticeable reluctance on the part of candidates to create a Newton's Second Law equation in which all the force terms were negative. This lead to the sly insertion of a minus sign into a calculation of the distance travelled by Pbefore coming to rest.

No A1 to be given for $s=1.5$ (if last A1 not given in iia), a is not g or $0.2 g$ or their a in 7iia allow $a>g$

Must be a sum of 5 and a speed meaningfully less than 5

Examiner's Comments

This proved too demanding for most candidates, hinging as it did on using the acceleration found in (i), and a distance calculated in (ii)(a). Some candidates who did this introductory work correctly then overlooked the vector nature of momentum. A significant minority used either the velocity calculated in (i) or the acceleration found in (ii)(a) in this part.
\end{tabular} \&

\hline \& \& Total \& 14 \& \&

\hline 2 \& i \& $$
\begin{aligned}
& s=0.6 \times 2+0.9 \times 2^{2} / 2 \\
& s=3
\end{aligned}
$$

\[
A B=6 \mathrm{~m}

\] \& | M1 |
| :--- |
| A1 |
| A1 | \& | Uses $s=u t+a t / 2, u \neq 0, a \neq g$ or g CorS30 |
| :--- |
| Examiner's Comments |
| Many good solutions were seen for three of the four parts of this question. | \&

\hline \& ii \& \[
$$
\begin{aligned}
& V_{M}=0.6+0.9 \times 2 O R \\
& V_{M}^{2}=0.6^{2}+2 \times 0.9 \times 3 \\
& a=9 \sin 30
\end{aligned}
$$

\] \& | B1 |
| :--- |
| B1 | \& | 2.4 |
| :--- |
| 5.76 |
| 4.9 | \& | Award if found in (i) and used in |
| :--- |
| (ii) |

\hline
\end{tabular}

	iv	$\mu=2.8 / 3.39$ $\mu=0.825$	D*M1 A1	$2.8=3.39(48) \mu$, both forces positive Accept 0.82 , not 0.83 or 0.826 Examiner's Comments It was pleasing that the correct forces were used in the Newton's Second Law equations in (iii) and (iv). Perhaps it was coincidence, but candidates who drew clear diagrams and included the forces and accelerations scored particularly well. A common error among candidates who left out a diagram was to have 0.6 as an acceleration.	Awarded only if M1 forN2L equation	
		Total	16			
3	i	$\begin{aligned} & 0.5 g-T= \pm 0.5 \times 1.4 \\ & 0.5 g-T=0.5 \times 1.4 \\ & T=4.2 \mathrm{~N} \end{aligned}$	M1 A1 A1	N2L for Q, difference of 2 force terms Examiner's Comments Was routine, though some solutions involved the mass of P and were given no credit.		
	ii ii ii ii ii	$\begin{aligned} & 4.2-F-0.6 g \sin 30=0.6 \times 1.4 \text { OR } \\ & 4.2-\mu R-0.6 g \sin 30=0.6 \times 1.4 \\ & \text { Friction }(=4.2-0.6 g \sin 30-0.6 \times 1.4)=0.42 \\ & \text { Reaction }=0.6 \mathrm{~g} \cos 30 \\ & 0.42=0.6 \mathrm{~g} \cos 30 \mu \text { OR } \mu=0.42 / 0.6 \mathrm{~g} \cos 30 \\ & \mu=0.0825 \end{aligned}$	M1 A1 B1 M1 A1	N2L for $P, 3$ forces including a component of weight of P and $\mathrm{cv}(4.2)$ May be implied May be implied $F=\mu R$, R a component of weight of P and F has been found using a component of the weight of P. Tolerate F-ve and \|-veF	. Accept 0.082, not 0.083. Examiner's Comments	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& Total \& 15 \& \& \\
\hline 4 \& i \& \[
3=8 \mu
\]
\[
\mu=0.375
\] \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Uses \(F=\mu R\), Allow \(R\) is 8 or \(8 g, F r=3\) only \(3 / 8\) (fraction), not \(3 \div 8\) (division) \\
Examiner's Comments \\
This part was invariably correct.
\end{tabular} \& \\
\hline \& ii
ii
ii \& \begin{tabular}{l}
\[
C^{2}=3^{2}+8^{2}
\]
\[
C=8.54 \mathrm{~N}
\]
\[
\tan \theta=3 / 8 \text { or } \tan \theta=8 / 3
\] \\
\(\theta=20.6^{\circ}\) with vertical or \(69.4^{\circ}\) with horizontal
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Uses Pythagoras with 3 and 8 or \(8 g\) \\
Accept 8.5 or \(\sqrt{ } 73\) \\
Uses tan with 3 and 8 or \(8 g\) \\
Accept 21 or 69, direction clear by words or diagram. \\
Examiner's Comments \\
This part was done satisfactorily by candidates who knew the term "contact force" mentioned in the specification. The valid solutions offered had only one common weakness, the specification of the direction of the force. An angle without a reference line or diagram is not specific. Many candidates gave their answer as a bearing, even though the contact force lies in a vertical plane. Too often, candidates" answers were " 8 N " and "vertical".
\end{tabular} \& \begin{tabular}{l}
Or CorS with answer for \(C\) \\
isw work after correct angle magnitude found
\end{tabular} \\
\hline \& iii \& \begin{tabular}{l}
(a) \(7(\cos 0)-3=+/-3\)
\[
T=6
\] \\
(b) \(R=+/-(8-T \times\) SorC30)
\[
R=8-T \sin 30
\]
\end{tabular} \& M1

M1

A1 \& \begin{tabular}{l}
$7(\cos 0)-3=0$ is MO

Answer alone is sufficient for M1A1

Accept $8 g$ with cmpt T

oe

 \&

TcosO - $3=-3$ assumes Fr direction has

not changed

(This is required also in the SC case)
\end{tabular}

\hline
\end{tabular}

				these parts were well done and most candidates scored full marks on both parts.	
	iv iv iv iv iv	(a) $\begin{aligned} & T-0.3 g \sin 30=-0.3 \times 0.9 \\ & T=1.2 \end{aligned}$ (b) $\begin{aligned} & -0.4 \times 0.9=0.4 g \sin 30-T-F_{r} \\ & -0.4 \times 0.9=0.4 g \sin 30-1.2-F_{r} \end{aligned}$ $F_{r}=1.12 \mathrm{~N}$	M1 A1ft A1 M1 A1ft A1	N2L, 2 forces including cmpt of weight $\mathrm{cv}(0.9)$ but signs must be consistent with the direction of motion N2L, 3 forces including cmpt of weight $\mathrm{cv}(0.9)$ and $\mathrm{cv}(1.2)$ but signs must be consistent with the direction of motion Examiner's Comments Here it was necessary to use Newton's second law on each particle separately. In both parts the signs used needed to be consistent with the direction of motion in order to gain accuracy marks. In (a) the motion of particle P should have been used; most candidates realised this but a few used the wrong mass or had different masses on the 2 sides of the equation. In (b), to find the friction, the motion of Q should have been used but candidates who used the combined approach were also given credit. Again there were some muddles with the masses and signs but most scored well here.	Allow $m g(\cos / \sin) 30$ Allow mg(cos / sin)30
		Total	15		
6	i	$F r=0.2 \times 0.4 g$ $1.2-0.2 \times 0.4 g=0.4 a$ $a=1.04 \mathrm{~m} \mathrm{~s}^{-2}$	B1 M1 A1	N2L, 2 forces Examiner's Comments Good solutions from many candidates particularly in (i) and (ii) but (iii) and (iv) proved a challenge for some who failed to think through the mechanics of	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& \begin{tabular}{l}
the varying situations. There was some misunderstanding of the phrase 'above the horizontal' which indicated that the force was acting upwards away from the surface. Credit was given, in the parts affected, if the force was taken to be acting downwards with a small penalty applied in (iv) since this part was simplified by the misunderstanding. \\
Part (i) was not always completed as successfully as (ii) but was generally well done.
\end{tabular} \& \\
\hline \& ii
ii

ii \& $$
R=0.4 g-1.2 \sin 20
$$

$$
1.2 \cos 20-0.2(0.4 g-1.2 \sin 20)=0.4 a
$$

\[
a=1.06 \mathrm{~m} \mathrm{~s}^{-2}

\] \& | B1 |
| :--- |
| M1 |
| A1 | \& | N2L, 2 forces, cmpt of 1.2 and Frnot $F_{\text {(}}(\mathbf{i})$ |
| :--- |
| Examiner's Comments |
| Most candidates understood that the normal contact force and hence the friction would now change. No credit was given if the value of friction from (i) was used. | \& | $\begin{aligned} & \text { SC } R=0.4 g+1.2 \sin 20 \\ & 1.2 \cos 20-0.2(0.4 g+1.2 \sin 20) \\ & =0.4 a \end{aligned}$ $a=0.654 \mathrm{~m} \mathrm{~s}^{-2}$ |
| :--- |
| Give B1M1A1 |

\hline \& iii

iii \& \begin{tabular}{l}
$$
1.2 \cos 70-0.2(0.4 g-1.2 \sin 70)
$$

(Total is negative,) friction not overcome by (tractive) force
$$
a=0 \mathrm{~m} \mathrm{~s}^{-2}
$$

 \&

M1

A1

A1

 \&

Difference of two relevant forces, neither used earlier (or find and compare)

Examiner's Comments

Too many simply followed the same routine application of Newton's second law used in (ii) and gave an negative value for the acceleration having failed to appreciate that the tractive force was no longer enough to overcome friction so the acceleration would be zero.

 \&

SC 1.2cos70-0.2(0.4g+ 1.2sin70) Mark as correct case

Only finding a negative acceleration scores maximum M1 in both cases.
\end{tabular}

\hline \& iv \& $1.2<0.4 \mathrm{~g}$ (oe, soi) \& M1 \& Comparison of weight and 1.2 without involving R \& SC Sum of weight and 1.2

\hline
\end{tabular}

	iv	P cannot rise from table or $\mathrm{a}=0 \mathrm{~m} \mathrm{~s}^{-2}$	A1	Only finding a negative acceleration scores MO Examiner's Comments The applied force was now vertical so no credit was given for work which only considered horizontal motion even if this produced the answer $a=0$. There was a general lack of understanding that the crucial question now was whether or not the applied force was sufficient to lift the object off the table.	P can't go through the table ora $=0$ B1 only
		Total	11		
7	i i	Perpendicular components of ($2 P$ and $+/-(5-P)$ $\begin{aligned} & (P-5)^{2}+\left(2 P^{2}=25^{2}\right. \\ & 5 P^{2}-10 P-600=0 \\ & P=12 \end{aligned}$ $\cos \theta=(2 \times 12) / 25, \tan \theta=(12-5) / 2 \times 12$ etc. Angle with vertical $=16.3^{\circ}$	B1 M1 M1 A1 M1 A1 $\sqrt{ }$ A1	Uses appropriate Pythagoras Attempt to solve 3 term QE "=0" Targets any relevant angle appropriately $\mathrm{ft} \operatorname{cv}(P)$ Must be angle with vertical Examiner's Comments A good diagram showing all forces was beneficial to those who included it. The only common error was that the squaring of the $2 P N$ force when using Pythagoras theorem was written $2 P$. Too often candidates failed to see their "invisible brackets", and obtained a quadratic equation starting $3 P^{2}$ which would fail to give a useful answer. Several candidates found the angle the resultant makes with the horizontal at the end of part (i).	
	ii	$R=+/-(3 \times 9.8-2 \times 12) O R R=+/-(3 \times 9.8-25 \cos (\operatorname{Ans}(\mathrm{i})))$ $R=5.4 \mathrm{~N} \text { (may be implied) }$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \sqrt{ } \text {. } \end{aligned}$	Bracketed terms must have opposite signs $\mathrm{ft} 29.4-2 \times \operatorname{cv}(P(\mathrm{i})) \text { OR } 29.4-25 \cos (\operatorname{cv}(\theta(\mathrm{i}))$	

	ii	$\begin{aligned} & 12-5-0.15 \times 5.4=3 a \text { OR } 25 \sin (\operatorname{cv}(\theta(i))-0.15 \times 5.4=3 a \\ & a=2.06 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$ Direction East	D^{*} M1 A1 B1	N2L, cv(12) cv(5.4) sho Allow bearing (0) 90° Examiner's Comments Many candidates mad were rare. Using the ve component of reaction Law with the correct fo presented in many wa context set in the ques	d be acceptable reasonable attempt, but fully developed solutions cal component of the resultant to find the normal ften ignored), and then using Newton's Second es was demanding. The direction of motion was but only "East" or "Bearing 090"" (using the) were deemed acceptable.	
		Total	12			
8	a	Resolve parallel to the slope: $100+F-20 g \sin a=0\left(^{*}\right)$ Resolve perpendicular to the slope and friction force is maximum: $R=20 g \cos a \text { and } F=\mu R$ Substitute and obtain $20 g \sin a=20 g \mu \cos a+100$	B1(AO 2.1) M1 (AO 3.3) M1 (AO 3.3) E1(AO 1.1)	Any equivalent which makes clear the relationships between: Reaction, 100 N force, friction acting upwards, weight of 20 $g \mathrm{~N}$ A diagram is	OR	

		$F_{s}=\mu \boldsymbol{R}=\frac{1}{3}\left(\frac{4}{5}\right) \mathrm{mg}=\frac{4}{15} \mathrm{mg}$ Resolving horizontally to the plane for both particles: $\begin{aligned} & T-\frac{13 m g}{15}=m a \\ & -T+\frac{16 m g}{5}=4 m a \end{aligned}$ $a=\frac{7 g}{15}$	M1(AO3.1b) A1(AO2.1) M1(AO1.1) E1(AO2.4) [6]	Obtain $\frac{4}{15} \mathrm{mg}$ Must obtain two equations in T and a Particle A: Attempt resolution as far as stating $T-F S-m g \sin a=$ ma Particle B: Attempt resolution as far as stating $-T+4 m g \sin \beta a$ $4 m a$ Solve their simultaneous equations to find a in terms of g. AG Solution must include clear diagrams or explanation for $F s$ and for horizontal resolutions.		
	b	$\frac{7 g}{30}=2 \times \frac{7 g}{15} \times s$	M1 (AO 1.1) $\mathrm{E} 1 \text { (AO2.1) }$	Use $v^{2}=0^{2}+2 a s$		

		Alternative solution Resolve vertically: $W+F \sin a=R \cos a$ $W=\frac{3}{5} R-\frac{4}{5} \times \frac{1}{2} R=\frac{1}{5} R \Rightarrow R=5 W$ Resolve horizontally: $H=F \cos a+R \sin a$ Substitute $H=\frac{1}{2} \times 5 W \times \frac{3}{5}+5 W \times \frac{4}{5}$ $H=\frac{11}{2} W$	M1 M1 A1 [5]	Use $F=\mu R$ and obtain R in terms of W AG; sufficient working must be shown			
	c	$\begin{aligned} & R=W \cos a \\ & W \sin \alpha-F=\frac{W}{g} a \\ & W \sin \alpha-\mu W \cos \alpha=\frac{W}{g} a \\ & a=\frac{1}{2} g \end{aligned}$	B1(AO1.1) M1(AO3.3) M1 (AO3.4) A1(AO1.1) [4]	For attempt at N2L \|	to plane, with F in the opposite direction to that seen in (b) Using $F=\mu R$ and eliminating R and F	Trig ratios may be numerical Do not allow Wfor the mass	
		Total	10				
11	i	$\sin \theta=0.4 / 0.5$ or $\cos \theta=0.3 / 0.5$	B1	θ is angle between string and horizontal			

		$\begin{aligned} & T=0.1 \mathrm{~g}(=0.98) \mathrm{N} \\ & \mathrm{Fr}=\operatorname{T\operatorname {cos}\theta (=0.588)} \\ & R=0.4 g-T \sin \theta(=3.136) \\ & \mu(=0.588 / 3.136)=3 / 16 \text { or } 0.1875 \\ & C^{2}=0.588^{2}+3.136^{2} \\ & C=3.19 \mathrm{~N} \end{aligned}$	B1 M1 M1 A1 M1 A1 [7]	CorS. T, angle do not have to be numerical SorC. T, angle do not have to be numerical with $0.4 g$ 0.187 or 0.188 Must have two nonzero numerical values Examiner's Comments Part (i) was often incomplete as cand "contact force". The initial part was w who could not find a relevant angle	If two values of T are employed, award B1 for 0.1 g associated with Q. R must be a difference of forces ates were unfamiliar with the term answered by many, and candidates e still able to gain a majority of marks.
	ii	$0.4 g-T=0.4 a$ $T-0.1 \mathrm{~g}=0.1 \mathrm{a}$ $0.3 \mathrm{~g}=0.5 \mathrm{a} \text { OR } 0.4 \mathrm{~g}-0.1 \mathrm{~g}=0.4 \mathrm{a}+0.1 \mathrm{a}$	M1 A1 M1	N2L for either particle, no components Both equations correct Solves two simultaneous	Finding a correctly from the combined equation gets M1A1. Using a in an N2L equation for P or Q can get M1, and obtaining the correct value of T gets A1,

		$T-F-2 g \sin 30=2(g \cos \theta)$ $8 g \sin \theta-T=8(g \cos \theta)$ $8 g \sin \theta-T=g-2 g \sin 30=10 g \cos \theta$ $8 \sin \theta-1-1=10 \cos \theta \Rightarrow 4 \sin \theta=1$	A1 (AO1.1) M1 (AO3.4) A1 (AO2.2a) [8]	to the plane for P Allow with a Applying N II parallel to the plane for Q Allow with a Combining simultaneous equations to eliminate T (dependent on all previous M marks) AG	require the correct number of terms and the weight resolved; allow sign errors and sin/cos confusion
	b	$\begin{aligned} & R=\sqrt{41} \\ & R \cos \alpha=4, R \sin \alpha=5 \\ & \tan \alpha=\frac{5}{4} \Rightarrow \alpha=51.3 \\ & \theta-\alpha=\sin ^{-1}\left(\frac{1}{R}\right) \\ & \theta=60.3 \end{aligned}$	B1 (AO1.1) M1 (AO1.1) A1 (AO1.1) M1 (AO1.1) A1 (AO1.1) M1 (AO3.4) A1	Forming two equations in R and a (allow sign errors or \sin / \cos confusion) Correct method for finding θ If θ is obtained by calculator with none of the above marks	6.403124... This mark is implied if correct a seen 51.340191... $\theta-51.34 \ldots=$ 8.9848... 60.325068...

