1. 



The diagram shows the curves $y=\log _{2} x$ and $y=\log _{2}(x-3)$.
i. Describe the geometrical transformation that transforms the curve $y=\log _{2} x$ to the curve $y=$ $\log _{2}(x-3)$.
ii. The curve $y=\log _{2} x$ passes through the point $(a, 3)$. State the value of $a$.
iii. The curve $y=\log _{2}(x-3)$ passes through the point $(b, 1.8)$. Find the value of $b$, giving your answer correct to 3 significant figures.
iv. The point $P$ lies on $y=\log _{2} x$ and has an $x$-coordinate of $c$. The point $Q$ lies on $y=\log _{2}(x-$ 3 ) and also has an $x$-coordinate of $c$. Given that the distance $P Q$ is 4 units find the exact value of $c$.
2.


The diagram shows the curves $y=a^{x}$ and $y=4 b^{x}$.
i.
a. State the coordinates of the point of intersection of $y=a^{x}$ with the $y$-axis.
b. State the coordinates of the point of intersection of $y=4 b^{x}$ with the $y$-axis.
c. State a possible value for $a$ and a possible value for $b$.
[2]
ii. It is now given that $a b=2$. Show that the $x$-coordinate of the point of intersection of $y=a^{x}$ and $y=4 b^{x}$ can be written as

$$
x=\frac{2}{2 \log _{2} a-1}
$$

3. 

Solve the equation $2^{4 x-1}=3^{5-2 x}$, giving your answer in the form $x=\frac{\log _{10} a}{\log _{10} b}$.
4.
a. Use logarithms to solve the equation

$$
2^{n-3}=18000,
$$

giving your answer correct to 3 significant figures.
b. Solve the simultaneous equations

$$
\log _{2} x+\log _{2} y=8, \quad \log _{2}\left(\frac{x^{2}}{y}\right)=7 .
$$

[5]
5. i. Express $2 \log _{3} x-\log _{3}(x+4)$ as a single logarithm.
[2]
ii. Hence solve the equation $2 \log _{3} x-\log _{3}(x+4)=2$.
[4]
6. a. The mass, $M$ grams, of a substance at time $t$ years is given by

$$
M=58 \mathrm{e}^{-0.33 t} .
$$

Find the rate at which the mass is decreasing at the instant when $t=4$. Give your answer correct to 2 significant figures.
b. The mass of a second substance is increasing exponentially. The initial mass is 42.0 grams and, 6 years later, the mass is 51.8 grams. Find the mass at a time 24 years after the initial value.
7. The mass of a substance is decreasing exponentially. Its mass is $m$ grams at time $t$ years. The following table shows certain values of $t$ and $m$.

| $t$ | 0 | 5 | 10 | 25 |
| :---: | :---: | :---: | :---: | :---: |
| $m$ | 200 | 160 |  |  |

i. Find the values missing from the table.
ii. Determine the value of $t$, correct to the nearest integer, for which the mass is 50 grams.
8. The number of members of a social networking site is modelled by $m=150 \mathrm{e}^{2 t}$, where $m$ is the number of members and $t$ is time in weeks after the launch of the site.
(a) State what this model implies about the relationship between $m$ and the rate of change of $m$.
[2]
(b) What is the significance of the integer 150 in the model?
(c) Find the week in which the model predicts that the number of members first exceeds 60000.
(d) The social networking site only expects to attract 60000 members. Suggest how the model could be refined to take account of this.
9. A doctors' surgery starts a campaign to reduce missed appointments. The number of missed appointments for each of the first five weeks after the start of the campaign is shown below.

| Number of weeks <br> after the start $(x)$ | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of missed <br> appointments $(\lambda)$ | 235 | 149 | 99 | 59 | 38 |

This data could be modelled by an equation of the form $y=p q^{x}$ where $p$ and $q$ are constants.
(a)

Show that this relationship may be expressed in the form $\log _{10} y=m x+c$, expressing $m$ and $c$ in terms of $p$ and/or $q$.

The diagram below shows $\log _{10} y$ plotted against $x$, for the given data.


Use the model to predict when the number of missed appointments will fall below
(c) 20 .

Explain why this answer may not be reliable.
10. In this question you must show detailed reasoning.

Use logarithms to solve the equation

$$
3^{2 x+1}=4^{100}
$$

giving your answer correct to 3 significant figures.
11. Sanjeep invests $£ 250$ at $4 \%$ compound interest per annum. Interest is added at the end of each complete year.
(a) What is Sanjeep's investment worth after 5 years?
(b) After how long will Sanjeep's investment be worth $£ 500$ ?
(c) State briefly a limitation of the model used in part (b)
12. The population of fish, $P$, in a lake is recorded at 10 day intervals. The table below shows the data collected, where $t$ is the number of days since the population was first recorded.

| $t$ | 0 | 10 | 20 | 30 | 40 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| $P$ | 20 | 24 | 29 | 34 | 42 | 50 |

It is proposed the population can be modelled by the equation $P=a b^{t}$, where $a$ and $b$ are constants.
(a) Complete the table of values below. Plot the final three values of $\log _{10} P$ against $t$ on the axes provided.

| $t$ | 0 | 10 | 20 | 30 | 40 | 50 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\log _{10} P$ | 1.30 | 1.38 | 1.46 |  |  |  |


(b) By drawing an appropriate straight line on your graph, find the values of $a$ and $b$.
(c) Use the model to predict the population of fish when $t=200$.
(d) Explain why this prediction may not be reliable.
13. (a) Show that the equation $\log _{2}(y+1)-1=2 \log _{2} x$ can be written in the form $y=a x^{2}+b$, (a) where $a$ and $b$ are integers.
(b) Hence solve the simultaneous equations

$$
\log _{2}(y+1)-1=2 \log _{2} x, \quad \log _{2}(y-10 x+14)=0
$$

14. A sequence of three transformations maps the curve $y=\ln x$ to the curve $y=e^{3 x}-5$. Give details of these transformations.
15. A pan of water is heated until it reaches $100^{\circ} \mathrm{C}$. Once the water reaches $100^{\circ} \mathrm{C}$, the heat is switched off and the temperature $T^{\circ} \mathrm{C}$ of the water decreases. The temperature of the water is modelled by the equation

$$
T=25+a e^{-\kappa t}
$$

where $t$ denotes the time, in minutes, after the heat is switched off and $a$ and $k$ are positive constants.
(a) Write down the value of $a$.
(b) Explain what the value of 25 represents in the equation $T=25+a e^{-\kappa t}$.

When the heat is switched off, the initial rate of decrease of the temperature of the water is 15 ${ }^{\circ} \mathrm{C}$ per minute.
(c) Calculate the value of $k$.
(d) Find the time taken for the temperature of the water to drop from $100^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$.
(e) A second pan of water is heated, but the heat is turned off when the water is at a temperature of less than $100^{\circ} \mathrm{C}$. Suggest how the equation for the temperature as the water cools would be modified by this.
16. In a science experiment a substance is decaying exponentially. Its mass, $M$ grams, at time $t$ minutes is given by $M=300 e^{-0.05 t}$.
(a) Find the time taken for the mass to decrease to half of its original value.

A second substance is also decaying exponentially. Initially its mass was 400 grams and, after 10 minutes, its mass was 320 grams.
(b) Find the time at which both substances are decaying at the same rate.
17. A student was asked to solve the equation $2\left(\log _{3} x\right)^{2}-3 \log _{3} x-2=0$. The student's attempt is written out below.

$$
\begin{aligned}
& 2\left(\log _{3} x\right)^{2}-3 \log _{3} x-2=0 \\
& 4 \log _{3} x-3 \log _{3} x-2=0 \\
& \log _{3} x-2=0 \\
& \log _{3} x=2 \\
& x=8
\end{aligned}
$$

(a) Identify the two mistakes that the student has made.
(b) Solve the equation $2\left(\log _{3} x\right)^{2}-3 \log _{3} x-2=0$, giving your answers in an exact form.
18. An analyst believes that the sales of a particular electronic device are growing exponentially. In 2015 the sales were 3.1 million devices and the rate of increase in the annual sales is 0.8 million devices per year.
(a) Find a model to represent the annual sales, defining any variables used.
(b) In 2017 the sales were 5.2 million devices. Determine whether this is consistent with the model in part (a).
(c) The analyst uses the model in part (a) to predict the sales for 2025. Comment on the reliability of this prediction.
19. In this question you must show detailed reasoning.

Solve the simultaneous equations
$\mathrm{e}^{x}-2 \mathrm{e}^{y}=3$
$e^{2 x}-4 e^{2 y}=33$.
Give your answer in an exact form.
20. Use logarithms to solve the equation $2^{3 x-1}=3^{x+4}$, giving your answer correct to 3 significant figures.

## Mark scheme

| Question |  | Answer/Indicative content | Marks | Part marks and guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | i | Translation of 3 units in positive $x$-direction | B1 | State translation | Must be 'translation' and not 'move', slide', |
|  |  |  |  |  | Independent of first B1 |
|  |  |  |  |  | Allow vector notation, but not a coordinate ie (3, 0) |
|  |  |  |  |  | Worded descriptions must give clear intention of |
|  |  |  |  |  | direction, so BO for just ' $x$-direction' or 'parallel to $x$-axis' unless +3 also stated (as ' + ' implies |
|  |  |  |  |  | the direction) |
|  |  |  |  |  | For the direction, allow 'in the positive $x$ direction', 'parallel to the positive $x$-axis' or 'to the right' |
|  |  |  |  |  | Do not allow 'in the positive $x$-axis' or 'along the positive $x$-axis' even if combined with correct |
|  |  |  |  |  | statement eg 'right' |
|  |  |  |  | State or imply 3 units in positive $x$-direction | Allow ' 3 ' or ' 3 units' but not ' 3 places', ' 3 squares', 'sf 3'... |
|  | i |  | B1 |  | Ignore irrelevant statements (eg intercepts on |
|  |  |  |  |  | axes), but penalise contradictions |
|  |  |  |  |  | BO BO if second transformation also given |
|  |  |  |  |  | Examiner's Comments |
|  |  |  |  |  | The majority of candidates could identify the |
|  |  |  |  |  | marks through a lack of precision when |
|  |  |  |  |  | describing it. Examiners expected to see the |
|  |  |  |  |  |  |








\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \&  \&  \& \& M1

A1 \& \begin{tabular}{l}
Obtain $144^{x}=486$ <br>
Introduce logs on both sides and drop power <br>
Obtain correct final answer <br>
Examiner's Comments <br>
Most candidates were able to gain the first two marks for taking logarithms of both sides and using the power rule, though a number of candidates failed to use brackets. This lack of precision was penalised unless subsequent working clearly showed the correct intention. In order to make further progress candidates had to then expand the brackets and gather like terms which, only the better candidates realised the need to do. Even fewer managed the next step of making $x$ the subject of the equation although some did manage to get a method mark for correctly combining two relevant logarithms. Recent examination sessions have shown candidates becoming more proficient in using logarithms to solve equations when a decimal answer is required, but it appears that algebraic manipulation of logarithms is still a challenge for many. Nevertheless, a pleasing number of fully correct solutions were still seen.

 \& 

Allow no base, or base other than 10 if consistent <br>
Do not isw subsequent incorrect log work
\end{tabular} <br>

\hline \& \& \& Total \& 6 \& \& <br>

\hline 4 \&  \&  \& $2 \log _{2} x-\log _{2} y=7$ \& M1 \& Correct use of one log law - on a correct equation \& | Either on first eqn to get $\log _{2}(x y)=8$, or on second eqn to get at least $\log _{2} x^{2}-\log _{2} y=7$ |
| :--- |
| Allow for one correct use, even if error made with other equation |
| Must be used on a correct equation so M0 if an error has already occurred eg $\log \left(x^{2} / y\right)=2 \log (x y)$ $=2(\log x+\log y)$ is MO | <br>

\hline
\end{tabular}

(

|  |  |  |  | before the logs were incorrectly removed, with no clear evidence of this the method mark cannot be awarded. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 5 |  |  |
| 5 |  | $\begin{aligned} & \log _{3} x^{2}-\log _{3}(x+4) \\ & =\log _{3} \frac{x^{2}}{x+4} \end{aligned}$ | $B 1^{*}$ <br> $B 1 d^{*}$ | Obtain $\log _{3} x^{2}-\log _{3}(x+4)$ $x^{2}$ <br> Obtain $\log _{3} x+4$ or equiv single term | Allow no base <br> Could be implied if both log steps done together Allow equiv eg $2\left(\log _{3} x-\log _{3}(x+4)^{0.5}\right)$ <br> CWO so B0 if eg $\frac{\log x^{2}}{\log (x+4 \text { seen in solution }}$ No ISW if subsequently incorrectly ‘simplified' eg $\log _{3}\left(\frac{x}{4}\right)$ <br> Must now have correct base in final answer condone if omitted earlier <br> Examiner's Comments <br> The majority of candidates were able to produce a fully correct solution to this part of the question. Of the remainder, most were aware of the power law but too often this was not used as the first step or the second term was incorrect at this stage so no fully correct expression was ever seen. Some candidates obtained the correct expression but then incorrectly cancelled within the logarithm, which was penalised. Another relatively common error was for the difference of the two logarithms to result in a fraction with a logarithm appearing in the denominator. Even if this subsequently was written as the required single term, the error in the method was still penalised. |
|  |  | $\begin{aligned} & \frac{x^{2}}{x+4}=3^{2} \\ & x^{2}=9(x+4) \end{aligned}$ | M1* | Attempt correct method to remove logs | Equation must be of format $\log _{3} f(x)=2$, with $f(x)$ being the result of a legitimate attempt to combine logs (but condone errors such as |





|  |  |  |  | some lack of attention given to the were guilty of having values in the accurate. Lack of care with signs did negative value of $t$ in part (ii). Other units, some concluding with 31 se grams. These errors with units wer | signs involved. Some candidates <br> rmula that were insufficiently lead in some instances to a candidates were careless with onds in part (ii) and others with 31 not penalised on this occasion. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 6 |  |  |
| 8 | a | The model is exponential so the rate of change of $m$ is proportional to $m$ <br> In this case, the rate of change of $m$ is $2 m$ | M1 (AO1.1) $\mathrm{E} 1(\mathrm{AO} 2.2 \mathrm{a})$ | Gradient of $e^{k x}=k e^{k x}$ <br> In context |  |
|  | b | The initial membership | $\mathrm{B} 1(\mathrm{AO} 1.1)$ <br> [1] |  |  |
|  | c | $60000=150 \mathrm{e}^{2 t}$ $\ln 400=2 t$ $2.995=t \text { and hence } 3$ | M1(AO3.4) <br> A1(AO1.1) <br> A1(AO1.1) <br> [3] | Correct equation and use correct order of operations Obtain correct intermediate step Or $\ln 60000=\ln 150+$ $2 t$ <br> Obtain correct answer |  |
|  | d | E.g. When the graph reaches 60000 the graph becomes constant. | $\mathrm{B} 1(\mathrm{AO} 3.5 \mathrm{c})$ <br> [1] | Correct suggestion |  |
|  |  | Total | 7 |  |  |
| 9 | a | $\log _{10} y=\log _{10} p+x \log _{10} q$ | B1(AO2.1) |  |  |


|  |  | $m=\log _{10} q, c=\log _{10} p$ | $\mathrm{B} 1(\mathrm{AO} 2.4)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | b | $\begin{aligned} & \qquad \log _{10} q=\frac{2.4-1.6}{1-5}=-0.2 \\ & \text { E.g. } \\ & q=10^{-0.2}=0.63 \end{aligned}$ $\log _{10} p=2.5 \text { so } p=380$ | M1(AO3.3) <br> A1(AO1.1) <br> B1(AO1.1) <br> [3] | Measure gradient from graph and identify it as $\log q$ | t qin[0.6, 0.7] <br> t pin [320, |  |
|  | c | $\log _{10} 20=1.3$ so week 7 <br> E.g. Extrapolation is unjustified because it assumes that the assumptions made in the model will hold true in the long term | B1(AO3.4) <br> E1(AO3.5b) <br> [2] | One valid explanation |  |  |
|  |  | Total | 7 |  |  |  |
| 10 |  | DR $\begin{aligned} & \log 3^{2 x+1}=\log 4^{100} \\ & (2 x+1) \log 3=\log 4^{100} \end{aligned}$ $2 x+1=126(.18 \ldots)$ $x=62.6$ | *M1(AO1.1a) <br> A1(AO1.1) <br> dep*M1(AO1.1) <br> A1(AO1.1) <br> [4] | Correctly introduce logs (can use any base, if consistent) Obtain linear equation in $x$, with logarithm(s) allow $2 x+1 \log 3=\log 4^{100}$ | $\begin{aligned} & \text { OR } \\ & \text { M1 } \log _{3} 3^{2 x+1} \\ & =\log _{3} 4^{100} \\ & \text { A1 } 2 x+1= \\ & \log _{3} 4^{100} \end{aligned}$ |  |
| © OCR 2017. Page 24 of 39 |  |  |  |  |  |  |



|  | c | Answer in range 700 to 1050 | B1ft(AO3.4) <br> [1] | ft their $a$ and $b$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | d | Accept any sensible explanation | B1(AO3.5b) <br> [1] | Eg extrapolation unreliable Eg the model is continuous, not discrete | Eg Model may no longer be valid eg insufficient food to support larger population |  |
|  |  | Total | 6 |  |  |  |
| 13 | i | $\begin{aligned} & \log _{2}(y+1)-\log _{2} 2=\log 2 x^{2} \\ & \log _{2}(y+1 / 2)=\log _{2} x^{2} \\ & y+1=2 x^{2} \\ & y=2 x^{2}-1 \text { ie } a=2, b=-1 \end{aligned}$ | B1 <br> M1 <br> A1 | $2 \log _{2} x=\log _{2} x^{2}$ <br> Correctly combine at least two log terms | Used correctly at any point, even if equation is no longer fully correct Allow no base <br> Could be the 2 log terms in the given equation, or could involve $\log _{2} 2$ <br> The terms being combined must be correct, even if an error has occurred elsewhere in the equation MO for incorrect method eg ${ }^{\log (\nu+}$ <br> ${ }^{1)} / \log 2$ even if it then becomes $\log \left({ }^{(y+1 / 2)}\right.$ |  |






|  | $k=\frac{1}{5}$ | (AO 1.1) | Substitute $t=0$ into <br> their rate of change <br> and equate with + / <br> -15 <br> oe FT their <br>  <br> Examiner's Comments <br> This was not well understood, with very few candidates using the fact that the gradient of $\mathrm{e}^{k x}$.is equal to $k \mathrm{e}^{k x}$. It was very common to see attempts to solve $85=25+a e^{-k t}$, with the value of a from (a) and $t=1$. |
| :---: | :---: | :---: | :---: |
| I | $45=25+75 \mathrm{e}^{-\frac{1}{5} t} \Rightarrow 75 \mathrm{e}^{-\frac{1}{5} t}=20$ <br> (eg) $-\frac{1}{5} t=\ln \left(\frac{4}{15}\right) \Rightarrow t=\ldots$ <br> After 6.6 mins | M1 <br> (AO 1.1) <br> M1 <br> (AO 1.1) <br> A1 (AO 3.2a) | Substitute $T=45$ <br> and subtract 25 <br> from both sides Their $a$ and $k$ <br> Take logs correctly <br> and attempt to <br> solve for $t$  <br> Cao (no FT on this <br> mark) with units $6.6087792-$ <br> Examiner's Comments <br> Inevitably those who did not obtain a value of a and/or $k$ were unable to make progress in this part. Those who had incorrect values seemed to understand the method. A few set $T=55$. Because of the difficulties encountered in (c) very few correct answers were seen. Note that here |









|  |  | $x=\frac{4 \log _{2} 3+1}{3-\log _{2} 3}=5.19$  | the front <br> and <br> attempt to <br> make $x$ the <br> subject | In base 10 <br> $x=\frac{4 \log 3+\log 2}{3 \log 2-\log 3}=5.19$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | Total | 3 |  |  |

