1. A curve has equation $y=2 x^{2}$. The points A and B lie on the curve and have x-coordinates 5 and $5+h$ respectively, where $h>0$.
i. Show that the gradient of the line $A B$ is $20+2 h$.
ii. Explain how the answer to part (i) relates to the gradient of the curve at A.
iii. The normal to the curve at A meets the y-axis at the point C. Find the y-coordinate of C.
2. Differentiate $\mathrm{f}(x)=x^{4}$ from first principles.
3.

(a) Given that $\mathrm{f}(x)=x^{2}-4 x$, use differentiation from first principles to show that $\mathrm{f}^{\prime}(x)=2 x$ -4.
(b) Find the equation of the curve through $(2,7)$ for which $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-4$.

Mark scheme

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Question} \& Answer/Indicative content \& \begin{tabular}{l}
Marks \\
B1
\end{tabular} \& \multicolumn{2}{|c|}{Part marks and guidance} \\
\hline 1 \& \(i\)
\(i\)

i \& \begin{tabular}{l}
$$
\begin{aligned}
& y_{1}=50, y_{2}=2(5+h)^{2} \\
& \frac{\left(50+20 h+2 h^{2}\right)-50}{(5+h)-5}
\end{aligned}
$$

$20+2 h$

 \&

B1

M1

A1

 \&

Finds y coordinates at 5 and $5+h$

Correct method to find gradient of a line segment; at least $3 / 4$ values correct

Fully correct working to give answer AG

 \&

Need not be simplified

Examiner's Comments

Less than two-thirds of candidates secured all three marks for this part, and although some used the fact the answer was given to go back and correct slips in algebraic working, others obtained answers that were clearly "fiddlled". Many attempted to use differentiation rather than the correct method to find the gradient of a line segment.
\end{tabular}

\hline \& ii \& | e.g. "As h tends to zero, the gradient will be 20 " |
| :--- |
| Example responses to (ii) |
| h is zero so the gradient is 20 B 1 |
| At A $\times=5, h=0$ so gradient equals 20 B 1 |
| As h approaches 0 , the gradient of $A B$ approaches 20 which is the gradient of A B1 |
| As h were infinitely small, $20+2 h$ is the same as the gradient at A , otherwise it's greater than the gradient at A B1 |
| The smaller h is the closer the gradient of $A B$ is to the gradient of the curve at A B1 |
| As h tends to zero the gradient gets closer and closer to the actual value B1 The gradient of AB tends to the gradient of the tangent of the curve as h tends to zero B 1 | \& B1 \& Indicates understanding of limit \& | e.g. refer to h tending to zero or substitute $h=0$ into $20+2 h$ to obtain gradient at A |
| :--- |
| Examiner's Comments |
| Correct answers to this were rarely seen. An appreciation of the understanding of a limit was expected, but many just used differentiation to compare the values or, even more commonly, discussed the "negative reciprocal". |

\hline
\end{tabular}

