1. The temperature of a freezer is $-20^{\circ} \mathrm{C}$. A container of a liquid is placed in the freezer. The rate at which the temperature, $\theta^{\circ} \mathrm{C}$, of a liquid decreases is proportional to the difference in temperature between the liquid and its surroundings. The situation is modelled by the differential equation

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} t}=-k(\theta+20),
$$

where time $t$ is in minutes and $k$ is a positive constant.
i. Express $\theta$ in terms of $t, k$ and an arbitrary constant.

Initially the temperature of the liquid in the container is $40^{\circ} \mathrm{C}$ and, at this instant, the liquid is cooling at a rate of $3^{\circ} \mathrm{C}$ per minute. The liquid freezes at $0^{\circ} \mathrm{C}$.
ii. Find the value of $k$ and find also the time it takes (to the nearest minute) for the liquid to freeze.

## [5]

The procedure is repeated on another occasion with a different liquid. The initial temperature of this liquid is $90^{\circ} \mathrm{C}$. After 19 minutes its temperature is $0^{\circ} \mathrm{C}$.
iii. Without any further calculation, explain what you can deduce about the value of $k$ in this case.
2. At time $t$ seconds, the radius of a spherical balloon is $r \mathrm{~cm}$. The balloon is being inflated so that the rate of increase of its radius is inversely proportional to the square root of its radius. When $t=5, r$ $=9$ and, at this instant, the radius is increasing at $1.08 \mathrm{~cm} \mathrm{~s}^{-1}$.
i. Write down a differential equation to model this situation, and solve it to express $r$ in terms of $t$.
ii. How much air is in the balloon initially?
[The volume of a sphere is $V=\frac{4}{3} \pi r^{3}$.]
3. A container in the shape of an inverted cone of radius 3 metres and vertical height 4.5 metres is initially filled with liquid fertiliser. This fertiliser is released through a hole in the bottom of the container at a rate of $0.01 \mathrm{~m}^{3}$ per second. At time $t$ seconds the fertiliser remaining in the container forms an inverted cone of height $h$ metres.
[The volume of a cone is $V=\frac{1}{3} \pi r^{2} h_{\text {.] }}$
i. Show that $h^{2} \frac{\mathrm{~d} h}{\mathrm{~d} t}=-\frac{9}{400 \pi}$.
ii. Express $h$ in terms of $t$.
iii. Find the time it takes to empty the container, giving your answer to the nearest minute.
4. In the year 2000 the population density, $P$, of a village was 100 people per $\mathrm{km}^{2}$, and was increasing at the rate of 1 person per $\mathrm{km}^{2}$ per year. The rate of increase of the population density is thought to be inversely proportional to the size of the population density. The time in years after the year 2000 is denoted by $t$.
i. Write down a differential equation to model this situation, and solve it to express $P$ in terms of $t$.
ii. In 2008 the population density of the village was 108 people per $\mathrm{km}^{2}$ and in 2013 it was 128 people per $\mathrm{km}^{2}$. Determine how well the model fits these figures.
5.
i. Express $\frac{16+5 x-2 x^{2}}{(x+1)^{2}(x+4) \text { in partial fractions. }}$
ii. It is given that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(16+5 x-2 x^{2}\right) y}{(x+1)^{2}(x+4)}
$$

and that $y=\frac{1}{256}$ when $x=0$. Find the exact value of $y$ when $x=2$. Give your answer in the form $A e^{n}$.
6. Helga invests $£ 4000$ in a savings account. After $t$ days, her investment is worth $£ y$. The rate of increase of $y$ is $k y$, where $k$ is a constant.
(a) Write down a differential equation in terms of $t, y$ and $k$.
(b) Solve your differential equation to find the value of Helga's investment after $t$ days. Give your answer in terms of $k$ and $t$.

It is given that $k=\frac{1}{365} \ln \left(1+\frac{r}{100}\right)$ where $\%$ is the rate of interest per annum. During the first year the rate of interest is $6 \%$ per annum.
(c) Find the value of Helga's investment after 90 days.

After one year (365 days), the rate of interest drops to 5\% per annum.
(d) Find the total time that it will take for Helga's investment to double in value.
7. A new bird species is introduced into a region where it has previously been absent. Initially 20 birds are introduced. The rate of increase of the number $N$ of birds after $t$ years is modelled by
(a) $N=\frac{100\left(3 e^{0.2 t}-2\right)}{\left(3 e^{0.2 t}+2\right)}$.

Hence explain what will happen to the number of birds over a long period of time, as predicted by the model.
(c) State one limitation of the model.
8. A tank is shaped as a cuboid. The base has dimensions 10 cm by 10 cm . Initially the tank is empty. Water flows into the tank at $25 \mathrm{~cm}^{3}$ per second. Water also leaks out of the tank at $4 h^{2} \mathrm{~cm}^{3}$ per second, where $h \mathrm{~cm}$ is the depth of the water after $t$ seconds. Find the time taken for the water to reach a depth of 2 cm .
9. A scientist is attempting to model the number of insects, $N$, present in a colony at time $t$ weeks. When $t=0$ there are 400 insects and when $t=1$ there are 440 insects.
(a) A scientist assumes that the rate of increase of the number of insects is inversely proportional to the number of insects present at time $t$.
(i) Write down a differential equation to model this situation.
(ii) Solve this differential equation to find N in terms of $t$.
(b) In a revised model it is assumed that $\frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{N^{2}}{3988 \mathrm{e}^{0.2 t}}$. Solve this differential equation to find $N$ in terms of $t$.
(c) Compare the long-term behaviour of the two models.
10. The gradient of the curve $y=\mathrm{f}(x)$ is given by the differential equation

$$
(2 x-1)^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y^{2}=0
$$

and the curve passes through the point $(1,1)$. By solving this differential equation show that

$$
\mathrm{f}(x)=\frac{a x^{2}-a x+1}{b x^{2}-b x+1},
$$

where $a$ and $b$ are integers to be determined.
11.

The gradient function of a curve is given by $\frac{\mathrm{d} y}{\mathrm{dx}}=\frac{x^{2} \sin 2 x}{2 \cos ^{2} 4 y-1}$.
(a) Find an equation for the curve in the form $f(y)=g(x)$

The curve passes through the point $\left(\frac{1}{4} \pi, \frac{1}{12} \pi\right)$.
(b) Find the smallest positive value of $y$ for which $x=0$.
12. As a spherical snowball melts its volume decreases. The rate of decrease of the volume of the snowball at any given time is modelled as being proportional to its volume at that time. Initially the volume of the snowball is $500 \mathrm{~cm}^{3}$ and the rate of decrease of its volume is $20 \mathrm{~cm}^{3}$ per hour.
(a) Find the time that this model would predict for the snowball's volume to decrease to $250 \mathrm{~cm}^{3}$.
(b) Write down one assumption made when using this model.
(c) Comment on how realistic this model would be in the long term.

## Mark scheme

| Question |  | Answer/Indicative content Marks |  | Part marks and guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | i | Separating variables $\int \frac{1}{\theta+20} \mathrm{~d} \theta=\int-k \mathrm{~d} t$ <br> $\ln (\theta+20)=-k t(+c)$ or equivalent $\left.\theta=A e^{-k t}-20 \text { oe (i.e. } 0=e^{-k t+c}-20\right)$ | M1 <br> A1 <br> A1 | or invert each side: $\frac{\mathrm{d} t}{\mathrm{~d} \theta}=-\frac{1}{k(\theta+20)}$ <br> "Eqn A" <br> "Eqn B" <br> Examiner's Comments <br> The majority of candidates used the method of 'separating the variables' and generally integrated each side correctly. However, many did not go further or failed to rearrange this equation correctly in order to express $\theta$ in terms of $t, k$ and an arbitrary constant. Many candidates thought that ' $+c$ ' should appear only at the end. A very few inverted each side and were generally less successful because of the position of ' $K$ immediately alongside the $\theta+20$ in the denominator. | Must see $^{\frac{1}{\theta+20}}$ ignore posn 'k' |
|  | ii | $(-) 3=-k(40+20)$ $k=\frac{1}{20} \text { oe }$ | M1 *A1 | $\text { Using } t=0, \theta=40, \frac{\mathrm{~d} \theta}{\mathrm{~d} t}=(-) 3$ <br> equation $k=-\frac{1}{20}$ <br> Examiner's Comments <br> There were some very good and neat solutions to this part, particularly by those who read the question carefully before delving into its solution. Even though $k$ was defined to be a |  |




|  |  |  |  | Examiner's Comments <br> Most understood what to do, gaining the method mark, and a few obtained the correct result. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 9 |  |  |
| 3 |  | $\begin{aligned} & \frac{\mathrm{d} V}{\mathrm{~d} t}= \pm 0.01 \\ & \text { by similar triangles, } \frac{h}{4.5}=\frac{r}{3} \\ & \frac{\mathrm{~d} h}{\mathrm{~d} t}= \pm 0.01 \times \text { their } \frac{\mathrm{d} h}{\mathrm{~d} V} \text { oe } \\ & -0.01=\left(\frac{4}{9} \pi h^{2}\right) \times \frac{\mathrm{d} h}{\mathrm{~d} t} \text { oe soi } \end{aligned}$ | B1 | $\begin{aligned} & r=\frac{2 h}{3} \text { oe } \\ & \text { may be implied by } \\ & \frac{\mathrm{d} V}{\mathrm{~d} h}=\frac{4}{9} \pi h^{2} \text { oe } \end{aligned}$ <br> use of Chain rule <br> completion to given result www <br> Examiner's Comments <br> This defeated all but the best candidates. Many scored an easy B 1 for $\frac{\mathrm{d} V}{\mathrm{~d} t}=-0.0{\underset{\text { 'atthougn a }}{ }}^{\text {a }}$ <br> good number missed out on this because they wrote $\frac{\mathrm{dh}}{\mathrm{~d} t}=-0.01{ }_{\text {nstead) }}$ <br> Thereafter very few made any progress: the need to eliminate $r$ was often not appreciated. Those who did spot the relationship between $h$ and $r$ often went on to score full marks. Having obtained Vin terms of $h$ only, a few strong | may follow from incorrect differentiation: <br> expressions must be a function of either ror $h$ or both $h^{2} \frac{\mathrm{~d} h}{\mathrm{~d} t}=\frac{-0.09}{4 \pi}=\frac{-9}{400 \pi}$ |

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& candidates derived the required result by considering \(K(t)=\) \(13.5 \pi-0.01 t\) and differentiating. \& \\
\hline \& ii \& \begin{tabular}{l}
\[
\begin{aligned}
\& \int h^{2} \mathrm{~d} h=\int \frac{-9}{400 \pi} \mathrm{~d} t \\
\& \frac{h^{3}}{3}=\frac{-9}{400 \pi} t(+c)
\end{aligned}
\] \\
substitution of \(t=0\) and \(h=4.5\) in their expression following integration \\
\(h=\sqrt[3]{\frac{729}{8}-\frac{27 t}{400 \pi}}\) oe isw
\end{tabular} \& M1 \& \begin{tabular}{l}
separation of variables \\
expression must include c and powers must be correct on each side \\
allow -0.0215 or -0.02148591 ...r.o.t to 4 sf or more and similarly 91.125 \\
Examiner's Comments \\
This proved surprisingly difficult for many. Those who did separate the variables either differentiated \(h^{2}\) instead of integrating, or omitted the constant of integration and made no further progress. Those who did achieve a correct value for " \(c\) " often went on to spoil their answer, or simply left the equation in implicit form.
\end{tabular} \& if no subsequent work, integral signs needed, but allow omission of \(\mathrm{d} h\) or \(\mathrm{d} t\), but must be correctly placed if present;
\[
91.125=729 / 8
\] \\
\hline \& iii \& \begin{tabular}{l}
set \(h=0\) and solve to obtain positive \(t\) \\
71 minutes cao
\end{tabular} \& M1

A1 \& | $\begin{aligned} & \text { or }(t=) \frac{1}{3} \pi \times 3^{2} \times 4.5 \div 0.01 \\ & (=1350 \pi) \end{aligned}$ |
| :--- |
| Examiner's Comments |
| Most realised that setting $h=0$ was required here. Due to earlier errors, this sometimes led to a negative value for $t$, surprisingly this did not always set the alarm bells ringing. A good proportion of candidates who did everything right lost an easy mark because they failed to convert the answer to | \& NB 1350r $=4241.150082$. <br>

\hline
\end{tabular}

|  |  |  |  | minutes. Some candidates who had made no progress earlier, were astute enough to realise that the correct answer could be obtained without the result from part (ii), as the rate of change of volume was constant. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 11 |  |  |
| 4 | i | $\begin{aligned} & \frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{k}{P} \\ & k=100 \text { trom } \frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{k}{P} \end{aligned}$ <br> $\int P \mathrm{~d} P=\int($ their $A) \mathrm{d} t$ $\frac{P^{2}}{2}=k t+c$ <br> substitution of $t=0$ and $P=100$ $P=\sqrt{10000+200 t} \text { or } 10 \sqrt{100+2 t}$ or $P=\sqrt{200(50+t)}$ isw cao | B1 <br> B1 <br> M1* <br> A1 <br> M1dep* <br> A1 | $\begin{aligned} & \text { or } \frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{1}{k P} \\ & \text { or } k=0.01 \text { from } \frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{1}{k P} \end{aligned}$ <br> allow $k=1$ $t=\frac{P^{2}}{2 k}+d$ <br> may follow incorrect algebraic manipulation, but equation must include $c$ (or $a$ ) <br> Examiner's Comments <br> A surprising number of candidates did not seem to understand inverse proportion, and setting up the initial equation elicited a wide range of incorrect responses. Those who did set up the equation correctly usually went on to earn at least four marks out of six. Finding $k$ caused more difficulty than expected: many candidates mistakenly assuming that $t$ $=1, P=101$ was a valid pair of values, instead of working with the information given in the question. In some cases | $k$ should be unspecified at this stage <br> may be seen later <br> allow omission of $\int$ and recovery of omission of one operator for M1*A1 <br> if $\mathrm{M} 0, \mathrm{SC} 2$ for $\ln P=k t+c$ thereafter only M 1 may be earned <br> NB $c=5000$ or $d=-50$ <br> allow recovery from eg use of $x$ for $P$ throughout, but withhold final A1 for eg $x=\sqrt{10000+200 t}$ |

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& rearranging to make \(P\) the subject of the formula proved troublesome. \& \\
\hline \& ii \& \begin{tabular}{l}
\(t=8, P=107.7\) or 108 so model was a good fit in 2008 oe \\
\(t=13, P=112(.2)\), so model was not appropriate in 2013 oe
\end{tabular} \& B1

B1 \& \begin{tabular}{l}
or $t=8.3(2)$ when $P=108+$ comment <br>
or $t=31.9(2)$ or 32 when $P=128+$ comment <br>
comments may be in same sentence, but both values must be referenced <br>
Examiner's Comments <br>
Full marks were rarely achieved in this case. Those who did find the correct values often speculated on future trends rather than commenting on the two values they had found. It was necessary to have earned at least four marks in part (i) to score in this part.

 \& 

value of $P$ or $t$ must be found and correct comment made in each case; comments may be in same sentence. <br>
if BOBO, SC1 for both values found no FT marks available <br>
comments on trends, extrapolation etc do not score <br>
just ticks / crosses etc do not score
\end{tabular} <br>

\hline \& \& Total \& 8 \& \& <br>

\hline 5 \& i \& $$
\begin{aligned}
& \frac{A}{(x+4)}+\frac{B}{(x+1)}+\frac{C}{(x+1)^{2}} \\
& \left.\left[16+5 x-2 x^{2}\right]=A(x+1)^{2}+B(x+1)(x+4)+C x+4\right) \\
& A=-4 \\
& C=3
\end{aligned}
$$ \& B1

M1
A1

A1 \& NB

$$
36=-9 \mathrm{~A}
$$

\[
9=3 C

\] \& | may be awarded later |
| :--- |
| allow sign errors only |
| if BOMO, allow SC3 for $\frac{2 x+5}{(x+1)^{2}}-\frac{4}{x+4}$ | <br>

\hline
\end{tabular}

|  | $B=2 \mathrm{isw}$ | A1 | $\begin{aligned} & -2=A+B, 5=2 A+5 B+C 16=A+4 B+4 C \\ & \mathbf{N B} \frac{-4}{(x+4)}+\frac{2}{(x+1)}+\frac{3}{(x+1)^{2}} \end{aligned}$ | Examiner's Comments <br> Most recognised the correct form of partial fractions and successfully cleared the fractions to produce a fully correct solution. |
| :---: | :---: | :---: | :---: | :---: |
| ii | $\begin{aligned} & \int \frac{d y}{y}=\int \frac{16+5 x-2 x^{2}}{(x+1)^{2}(x+4)} d x \\ & \frac{3}{(x+1)^{2}}+\frac{2}{(x+1)}-\frac{4}{(x+4)} \end{aligned}$ <br> seen in RHS, may be embedded | B1 | separation of variables <br> FT their partial fractions if two or three terms; ignore LHS | allow omission of integral signs; allow omission of $\mathrm{d} y$ or $\mathrm{d} x$ but not both <br> may be implied by correct integration of two of their terms |
| ii | $\frac{-3}{x+1}+2 \ln (x+1)-4 \ln (x+4)+c$ | A1FT | FT their non-zero 3,2 and 4 ; allow recovery from $x+1^{2}$ in denominator; <br> if brackets in log terms omitted, allow A1 if recovery seen in substitution <br> substitution of $x=0$ and | allow omission of $+c$ here |
| ii | $\ln \left(\frac{1}{256}\right)=-3+2 \ln 1-4 \ln 4+c$ | M1*dep | $y=\frac{1}{256}$ | + $c$ must be included and LHS must be correctly obtained |
| ii | $c=3 \text { cao }$ | A1 | allow if error in manipulation following integration; <br> or $A=\mathrm{e}^{-3}$ from $y=A e^{\frac{-3}{x+1}} \frac{(x+1)^{2}}{(x+4)^{4}}$ |  |
|  | $\ln y=\frac{-3}{2+1}+2 \ln (2+1)-4 \ln (2+4)+3$ | M1*dep | substitution of $x=2$; dependent on award of previous M1M1 and numerical value found | allow M1 if substitution follows incorrect manipulation |






(1)





|  | $\begin{aligned} & \frac{1}{4 y}=-\frac{1}{4(2 x-1)^{2}}+c,(1,1) \Rightarrow c=\ldots \\ & \frac{1}{y}=-\frac{1}{(2 x-1)^{2}}+2 \\ & \frac{1}{y}=\frac{2(2 x-1)^{2}-1}{(2 x-1)^{2}} \\ & y=\frac{(2 x-1)^{2}}{2(2 x-1)^{2}-1} \\ & y=\frac{4 x^{2}-4 x+1}{8 x^{2}-8 x+1} \end{aligned}$ | M1(AO $2.1) \mathrm{C}$ <br> A1(AO 2.2a) A <br> M1 AO 3.19) A <br> M1 (AO 1.1)A <br> A1(AO 2.2a) A | Use of $(1,1)$ to find $c$ dependent on the previous two M marks and substituted into correct form <br> Oe <br> Correct method for combining both terms on rhs (dependent on previous M mark) before taking the reciprocal Taking the reciprocal (dependent on previous M marks) and making $y$ the subject $a=4, b=8$ | Or re-write in terms of $y$ <br> Remove tripledecker fractions |  |
| :---: | :---: | :---: | :---: | :---: | :---: |







