1. The temperature of a freezer is -20°C. A container of a liquid is placed in the freezer. The rate at which the temperature, θ°C, of a liquid decreases is proportional to the difference in temperature between the liquid and its surroundings. The situation is modelled by the differential equation

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k(\theta + 20)$$

where time t is in minutes and k is a positive constant.

i. Express θ in terms of *t*, *k* and an arbitrary constant.

[3]

Initially the temperature of the liquid in the container is 40°C and, at this instant, the liquid is cooling at a rate of 3°C per minute. The liquid freezes at 0°C.

ii. Find the value of *k* and find also the time it takes (to the nearest minute) for the liquid to freeze.

[5]

The procedure is repeated on another occasion with a different liquid. The initial temperature of this liquid is 90°C. After 19 minutes its temperature is 0°C.

iii. Without any further calculation, explain what you can deduce about the value of *k* in this case.

[1]

- 2. At time *t* seconds, the radius of a spherical balloon is *r* cm. The balloon is being inflated so that the rate of increase of its radius is inversely proportional to the square root of its radius. When t = 5, r = 9 and, at this instant, the radius is increasing at 1.08 cm s⁻¹.
 - i. Write down a differential equation to model this situation, and solve it to express *r* in terms of *t*.

[7]

[2]

ii. How much air is in the balloon initially?

[The volume of a sphere is $V = \frac{4}{3}\pi r^3$.]

3. A container in the shape of an inverted cone of radius 3 metres and vertical height 4.5 metres is initially filled with liquid fertiliser. This fertiliser is released through a hole in the bottom of the container at a rate of 0.01 m³ per second. At time *t* seconds the fertiliser remaining in the container forms an inverted cone of height *h* metres.

[The volume of a cone is
$$V = \frac{1}{3}\pi r^2 h_{.]}$$

i. Show that
$$h^2 \frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{9}{400\pi}$$
.

ii. Express *h* in terms of *t*.

[4]

[2]

[5]

- iii. Find the time it takes to empty the container, giving your answer to the nearest minute.
- 4. In the year 2000 the population density, *P*, of a village was 100 people per km², and was increasing at the rate of 1 person per km² per year. The rate of increase of the population density is thought to be inversely proportional to the size of the population density. The time in years after the year 2000 is denoted by *t*.
 - i. Write down a differential equation to model this situation, and solve it to express *P* in terms of *t*.
 - [6]
 - ii. In 2008 the population density of the village was 108 people per km² and in 2013 it was 128 people per km². Determine how well the model fits these figures.

[2]

i. Express
$$\frac{16+5x-2x^2}{(x+1)^2(x+4)}$$
 in partial fractions.

5.

$$\frac{dy}{dx} = \frac{(16+5x-2x^2)y}{(x+1)^2(x+4)}$$

and that $y = \frac{1}{256}$ when x = 0. Find the exact value of y when x = 2. Give your answer in the form Ae^n .

[7]

- 6. Helga invests £4000 in a savings account. After *t* days, her investment is worth £*y*. The rate of increase of *y* is *ky*, where *k* is a constant.
 - (a) Write down a differential equation in terms of *t*, *y* and *k*. [1]
 - (b) Solve your differential equation to find the value of Helga's investment after t days.
 Give your answer in terms of k and t.
 [4]

$$k = \frac{1}{365} \ln \left(1 + \frac{r}{100} \right)$$

It is given that 100 where r% is the rate of interest per annum. During the first year the rate of interest is 6% per annum.

(c) Find the value of Helga's investment after 90 days. [2]

After one year (365 days), the rate of interest drops to 5% per annum.

(d) Find the total time that it will take for Helga's investment to double in value. [5]

7. A new bird species is introduced into a region where it has previously been absent. Initially 20 birds are introduced. The rate of increase of the number N of birds after t years is modelled by

$$\frac{1}{1000}$$
 (10000 – N^2).

(a)
$$N = \frac{100(3e^{0.2t} - 2)}{(3e^{0.2t} + 2)}$$
 [7]
Show that

(b) Hence explain what will happen to the number of birds over a long period of time, as predicted by the model.

[2]

[1]

[4]

[2]

- (c) State one limitation of the model.
- 8. A tank is shaped as a cuboid. The base has dimensions 10 cm by 10 cm. Initially the tank is empty. Water flows into the tank at 25 cm³ per second. Water also leaks out of the tank at $4h^2$ cm³ per second, where *h* cm is the depth of the water after *t* seconds. Find the time taken for the water to reach a depth of 2 cm. [9]
- 9. A scientist is attempting to model the number of insects, *N*, present in a colony at time t weeks. When t = 0 there are 400 insects and when t = 1 there are 440 insects.
 - (a) A scientist assumes that the rate of increase of the number of insects is inversely proportional to the number of insects present at time t.
 - (i) Write down a differential equation to model this situation. [1]
 - (ii) Solve this differential equation to find *N* in terms of *t*.

(b) In a revised model it is assumed that
$$\frac{dIV}{dt} = \frac{IV}{3988e^{0.2t}}$$
. Solve this differential [6] equation to find *N* in terms of *t*.

111

NT2

- (c) Compare the long-term behaviour of the two models.
- 10. The gradient of the curve y = f(x) is given by the differential equation

$$(2x-1)^3 \frac{dy}{dx} + 4y^2 = 0$$

and the curve passes through the point (1, 1). By solving this differential equation show that

$$f(x) = \frac{ax^2 - ax + 1}{bx^2 - bx + 1} ,$$

where *a* and *b* are integers to be determined.

11.

- The gradient function of a curve is given by $\frac{dy}{dx} = \frac{x^2 \sin 2x}{2 \cos^2 4y 1}.$
- (a) Find an equation for the curve in the form f(y) = q(x)

The curve passes through the point $(\frac{1}{4}\pi, \frac{1}{12}\pi)$.

- (b) Find the smallest positive value of y for which x = 0.
- 12. As a spherical snowball melts its volume decreases. The rate of decrease of the volume of the snowball at any given time is modelled as being proportional to its volume at that time. Initially the volume of the snowball is 500 cm³ and the rate of decrease of its volume is 20 cm³ per hour.
 - (a) Find the time that this model would predict for the snowball's volume to decrease to [7] 250 cm³.
 - (b) Write down one assumption made when using this model.
 - (c) Comment on how realistic this model would be in the long term. [1]

END OF QUESTION paper

© OCR 2017.

[9]

[4]

[1]

[6]

Mark scheme

Qı	Jesti	on	Answer/Indicative content	Marks	Part marks and guid	lance
1		i	Separating variables $\int \frac{1}{\theta + 20} d\theta = \int -k dt$	M1	or invert each side: $\frac{\mathrm{d}t}{\mathrm{d}\theta} = -\frac{1}{k(\theta+20)}$	Must see $\overline{oldsymbol{ heta}+20}$; ignore posn 'k'
		i	$ln(\theta + 20) = -kt(+ c)$ or equivalent	A1	"Eqn A"	
					"Eqn B"	
		i	$\theta = Ae^{-kt} - 20$ oe (i.e. $0 = e^{-kt + c} - 20$)	A1	Examiner's Comments The majority of candidates used the method of 'separating the variables' and generally integrated each side correctly. However, many did not go further or failed to rearrange this equation correctly in order to express θ in terms of <i>t</i> , <i>k</i> and an arbitrary constant. Many candidates thought that '+ c' should appear only at the end. A very few inverted each side and were generally less successful because of the position of ' <i>K</i> immediately alongside the θ + 20 in the denominator.	
		ii	(-)3 = - <i>K</i> (40 + 20)	M1	Using $t = 0, \theta = 40, \frac{d\theta}{dt} = (-)3$ in given	
		ii	$k = \frac{1}{20} \text{oe}$	*A1	$k = -\frac{1}{20}$ Examiner's Comments There were some very good and neat solutions to this part, particularly by those who read the question carefully before delving into its solution. Even though <i>k</i> was defined to be a	

				positive constant, a large number of candidates obtained $k = -\frac{1}{20}$. A few interpreted the statement "at this instant, the liquid is cooling" to imply that there was a constant decrease of 3 degrees every minute. However, many candidates attempted to use all the information correctly and found <i>k</i> , their own constant of integration and, finally, the time taken for the liquid to freeze.	
	ii	Subst $t = 0$, $\theta = 40$ & their k (where necessary) into their Eqn A or their Eqn B and solve for the arbitrary constant	M1		
	ii	Subst θ = 0 & their values of k and the arbitrary constant into their Eqn A or their Eqn B	M1		
	ii	t = 21.9722 = 22 minutes cao www	dep* A1		
		<i>k</i> is larger	B1	Examiner's Comments Most candidates stated that k must be larger, but explanations were sketchy.	
		Total	9		
2	i	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{k}{\sqrt{r}} \text{oe}$	B2	$\frac{\mathrm{d}r}{\mathrm{d}t}$ = ; B1 for $\frac{k}{\sqrt{r}}$	$\frac{\mathrm{d}r}{\mathrm{SR: B1 \ for}} \propto \frac{1}{\sqrt{r}}$
	i	Sep variables of their diff eqn (or invert) & integrate each side, increasing powers by 1 (or $\frac{1}{r} \rightarrow \ln r$)	*M1	their d.e. must be $\frac{\mathrm{d}r}{\mathrm{d}t}$ (or $\frac{\mathrm{d}t}{\mathrm{d}r}$) = f(r)	Ignore absence of '+c' after integration

$$\begin{vmatrix} i & \frac{dr}{dt} = 1.08, r = 9 \\ \text{Note } \frac{dr}{dt} = 1.08, r = 9 \\ \text{Note } \frac{dr}{dt} = 1.08, r = 9 \\ \text{Note } \frac{dr}{dt} = 1.08, r = 9 \\ \text{Note } \frac{dr}{dt} = 1.08, r = 9 \\ \text{Note } \frac{dr}{dt} = 1.08, r = 10 \text{ find } 10^{-1} \\ \text{Note } \frac{dr}{dt} = 1.08, r = 10 \text{ find } 10^{-1} \\ \text{Note } \frac{dr}{dt} = 1.08, r = 10 \text{ find } 10^{-1} \\ \text{Note } \frac{dr}{dt} = 1.08, r = 10 \text{ find } 10^{-1} \\ \text{Note } \frac{dr}{dt} = 1.08, r = 10 \text{ find } 10^{-1} \\ \text{Note } \frac{dr}{dt} = 1.08, r = 10 \text{ find } 10^{-1} \\ \text{Note } \frac{dr}{dt} = 1.08, r = 10 \text{ find } 10^{-1} \\ \text{Note } \frac{dr}{dt} = 1.08, r = 10 \text{ find } 10^{-1} \\ \text{Note } \frac{dr}{dt} = 1.08, r = 1.08 \\ \text{Note } \frac{dr}{dt} = 1.08 \\ \text{Note } \frac$$

				Examiner's Comments	
				Most understood what to do, gaining the method mark, and a few obtained the correct result.	
		Total	9		
3	i	$\frac{\mathrm{d}V}{\mathrm{d}t} = \pm 0.01$	B1		
	i	by similar triangles, $\frac{h}{4.5} = \frac{r}{3}$	B1	$r = \frac{2h}{3}$ oe	
	i		B1	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{4}{9}\pi h^2 \text{ oe}$	
	i	$\frac{\mathrm{d}h}{\mathrm{d}t} = \pm 0.01 \times \mathrm{their} \frac{\mathrm{d}h}{\mathrm{d}V} \mathrm{oe}$	M1	use of Chain rule	may follow from incorrect differentiation: expressions must be a function of either r or h or both
				completion to given result www	
				Examiner's Comments	
	i	$-0.01 = \left(\frac{4}{9}\pi h^2\right) \times \frac{dh}{dt}$	A1	This defeated all but the best candidates. Many scored an $\frac{dV}{dt} = -0.01$ [although a] good number missed out on this because they wrote	$h^2 \frac{dh}{dt} = \frac{-0.09}{4\pi} = \frac{-9}{400\pi}$
				$\frac{\mathrm{d}h}{\mathrm{d}t} = -0.01$	ui 4 <i>n</i> 400 <i>n</i>
				Thereafter very few made any progress: the need to eliminate r was often not appreciated. Those who did spot the relationship between h and r often went on to score full marks. Having obtained V in terms of h only, a few strong	

			candidates derived the required result by considering $\mathcal{V}(\hbar) = 13.5\pi - 0.01t$ and differentiating.	
ii	$\int h^2 \mathrm{d}h = \int \frac{-9}{400\pi} \mathrm{d}t$	M1	separation of variables	if no subsequent work, integral signs needed, but allow omission of d <i>h</i> or d <i>t</i> , but must be correctly placed if present;
$\frac{h^3}{3} = \frac{-9}{400\pi} t(+c)$		A1		
ii	substitution of $t = 0$ and $h = 4.5$ in their expression following integration	M1 expression must include c and powers must be correct on each side		
			allow – 0.0215 or – 0.02148591…r.o.t to 4 sf or more and similarly 91.125	
ii	$h = \sqrt[3]{\frac{729}{8} - \frac{27t}{400\pi}}$ oe isw	A1	Examiner's Comments This proved surprisingly difficult for many. Those who did separate the variables either differentiated <i>I</i> ² instead of integrating, or omitted the constant of integration and made no further progress. Those who did achieve a correct value for " <i>c</i> " often went on to spoil their answer, or simply left the equation in implicit form.	91.125 = ⁷²⁹ / ₈
111	set $h = 0$ and solve to obtain positive t	M1	$\frac{1}{3}\pi \times 3^{2} \times 4.5 \div 0.01$ (= 1350 π)	NB 1350π = 4241.150082
Ш	71 minutes cao	A1	Examiner's Comments Most realised that setting $h = 0$ was required here. Due to earlier errors, this sometimes led to a negative value for t ; surprisingly this did not always set the alarm bells ringing. A good proportion of candidates who did everything right lost an easy mark because they failed to convert the answer to	

				minutes. Some candidates who had made no progress earlier, were astute enough to realise that the correct answer could be obtained without the result from part (ii), as the rate of change of volume was constant.	
		Total	11		
4	i	$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{k}{P}$	B1	$\int_{\text{or}} \frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{kP}$	k should be unspecified at this stage
	i	$\frac{\mathrm{d}P}{k=100 \text{ from }} = \frac{k}{P}$	B1	or $k = 0.01$ from $\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{kP}$	may be seen later
	i	$\int \mathcal{P} \mathrm{d}\mathcal{P} = \int (\text{their } k) \mathrm{d}t$	M1*	allow $k = 1$	allow omission of ∫ and recovery of omission of one operator for M1*A1
	i	$\frac{P^2}{2} = kt + c$	A1	$\int_{\text{or}} t = \frac{P^2}{2k} + d$	if M0 , SC2 for $\ln P = kt + c$ thereafter only M1 may be earned
	i	substitution of $t = 0$ and $P = 100$	M1dep*	may follow incorrect algebraic manipulation, but equation must include c (or d)	NB <i>c</i> = 5000 or <i>d</i> = – 50
	i	$P = \sqrt{10000 + 200t}$ or $10\sqrt{100 + 2t}$ or $P = \sqrt{200(50 + t)}$ isw cao	A1		allow recovery from eg use of <i>x</i> for <i>P</i> throughout, but withhold final A1 for eg $x = \sqrt{10000 + 200t}$
				Examiner's Comments	
	i			A surprising number of candidates did not seem to understand inverse proportion, and setting up the initial equation elicited a wide range of incorrect responses. Those who did set up the equation correctly usually went on to earn at least four marks out of six. Finding k caused more difficulty than expected: many candidates mistakenly assuming that t = 1, P = 101 was a valid pair of values, instead of working with the information given in the question. In some cases	

				rearranging to make P the subject of the formula proved troublesome.	
	ii	t = 8, $P = 107.7$ or 108 so model was a good fit in 2008 oe	B1	or $t = 8.3(2)$ when $P = 108$ + commentvalue of P or t must be found and comment made in each case; co be in same sentence.	
				or <i>t</i> = 31.9(2) or 32 when <i>P</i> = 128 + comment	if B0B0, SC1 for both values found no FT marks available
	ii	t = 13, $P = 112(.2)$, so model was not appropriate in 2013 oe	B1	comments may be in same sentence, but both values must be referenced	comments on trends, extrapolation etc do not score just ticks / crosses etc do not score
				Examiner's Comments	
	ï			Full marks were rarely achieved in this case. Those who did find the correct values often speculated on future trends rather than commenting on the two values they had found. It was necessary to have earned at least four marks in part (i) to score in this part.	
		Total	8		
5	i	$\frac{A}{(x+4)} + \frac{B}{(x+1)} + \frac{C}{(x+1)^2}$	B1		may be awarded later
	i	$[16 + 5x - 2x^2] = A(x + 1)^2 + B(x + 1)(x + 4) + C(x + 4)$	M1		allow sign errors only
	i	A = -4	A1	NB 36 = -9 <i>A</i>	if BOMO , allow SC3 for
	i	<i>C</i> =3	A1	9 = 3 <i>C</i>	$\frac{2x+5}{(x+1)^2} - \frac{4}{x+4}$

$$\frac{1}{1} = \frac{1}{1} = \frac{1}$$

	ii	$y = \frac{e^2}{144}$ oe	A1	for <i>c</i>	eg to find expression for <i>y</i> Examiner's Comments The separation of variables caused problems for many, but most recognised the link with part (i) and worked with their partial fractions. The method was often well understood, but only a minority of candidates had the stamina and attention to detail to go on to the end and achieve the correct result.
		Total	12		
6		$\frac{\mathrm{d}y}{\mathrm{d}y} = k_{\mathrm{d}y}$	B1(AO3.1b)		
σ	a	dt = hy	[1]		
	b	$\frac{dy}{y} = kdt$ $\left[\ln y\right]_{4000}^{y} = k\left[t\right]_{0}^{t} \text{ or } \ln y = kt + c$ $\ln \frac{y}{4000} = kt \text{ or } \ln 4000 = 0 + c$ $y = 4000e^{kt}$	M1(AO1.1a) M1(AO1.1) A1(AO1.1) A1(AO1.1) [4]	Attempt separation of variables Correct integrals and limits Correct substitution in correct integral	
	с	$4000e^{\frac{90}{365}\ln 1.06}$ = 4057.89	M1(AO1.1) A1(AO1.1) [2]	FT their part (b) BC	

	d	After 1 year, increased by factor 1.06 Require further increase by factor $\frac{2}{1.06}$ $e^{\frac{t}{365}\ln 1.05} = \frac{2}{1.06}$ $\frac{t}{365}\ln 1.05 = \ln \frac{2}{1.06}$ $t = \frac{365}{\ln 1.05} \times \ln \frac{2}{1.06}$ = 4750 Total number of days = 5115	M1(AO3.1b) M1(AO1.1) A1(AO2.1) M1(AO1.1) A1(AO3.2a) [5]	May be implied Attempt to form equation with 1.05 and 1.06 Correct equation Attempt to remove logs isw	OR BC	
		Total	12			
7	а	$\frac{dN}{dt} = \frac{1}{1000} (10000 - N^2)$ $\frac{dN}{10000 - N^2} = \frac{1}{1000} dt$ $\frac{1}{200} (\frac{1}{100 - N} + \frac{1}{100 + N}) dN = \frac{1}{1000} t$ $\ln \frac{100 + N}{100 - N} = 0.2t + c$	M1(AO 3.3) M1(AO 1.1) M1(AO 3.1b) A1(AO 2.1) M1(AO 1.1)	Attempt separate variables Attempt PFs with correct denominators Equation of form		

		when $t = 0$, $N = 20$ hence $c = \ln (3/2)$ $\ln \frac{2(100+N)}{3(100-N)} = 0.2t$ $\frac{2(100+N)}{3(100-N)} = e^{0.2t}$ $N = \frac{100(3e^{0.2t}-2)}{(3e^{0.2t}+2)} AG$	A1(AO 2.1) A1(AO 1.1) [7]	$k \ln \frac{100 + N}{100 - N} = k't$ $(+c)$ Allow without $+c$ Attempt find c with $t = 0$ and $N = 20$ Allow without $+c$ Any correct equation in N & t after antilogCorrectly rearrange to give answer
	b	No. of birds increases and tends to 100	E1(AO 2.2b) E1(AO 3.4) [2]	
	с	Eg <i>W</i> is discrete but modelled by continuous	E1(AO 3.5b) [1]	No account of external factors eg weather
		Total	10	
8		$V = 100h \implies \frac{\mathrm{d}v}{\mathrm{d}h} = 100$ $\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} = 100 \frac{\mathrm{d}h}{\mathrm{d}t} \qquad [= 25 - 4h^2]$	M1(AO 3.4) A1(AO 1.2) M1(AO 3.1b)	

$\Rightarrow 25 - 4h^2 = 100 \frac{\mathrm{d}h}{\mathrm{d}t}$ oe				
$\int_{-\infty}^{2} \int_{-\infty}^{1} \int_{-\infty}^{t} \int_{-\infty}^{t} \int_{-\infty}^{1} \int_{-\infty}^{1$	M1(AO 2.5)	Equate $25 - 4h^2$ to their $\frac{dv}{dh} \times \frac{dh}{dt}$		
$\Rightarrow \int_{0} \frac{1}{25-4h^2} dh = \int_{0} \frac{1}{100} dt$	M1(AO 3.4)			
$\Rightarrow \frac{1}{10} \int_0^2 \frac{1}{5+2h} + \frac{1}{5-2h} \mathrm{d}h = \int_0^t \frac{1}{100} \mathrm{d}t$	A1(AO 2.1)	Attempt integration with correct denominator on LHS		
	M1(AO 1.2)	Attempt partial		
	A1(AO 2.2a)	fractions with correct denominators on LHS		
$\Rightarrow \frac{1}{10} \times \frac{1}{2} \left[\ln(5+2h) - \ln(5-2h) \right]_0^2 = \frac{t}{100}$	A1(AO 3.2a)	Correct partial fractions		
\Rightarrow 5ln 9 = t oe	[9]	Correct integral; ignore limits		
Time when depth is 2 cm is 11.0 seconds (3 sf)		Any correct numerical expression for <i>t</i>	10.9861	
		Allow 11 seconds		

			far, a few candidates did not ga making errors when rearranging requested form, such as squar	ain the final mark due to g the equation to the e rooting term by term.	
	$\int 3988 \mathcal{N}^2 \mathrm{d}\mathcal{N} = \int \mathrm{e}^{-0.2t} \mathrm{d}^t$	M1 (AO 3.1a)	Separate variables and attempt integration	Must be valid method to separate variables so allow coefficient slips only Some attempt to integrate, but	
b	$-3988N^{-1} = -5e^{-0.2t} + c$ OR $-N^{-1} = -\frac{5}{3988}e^{-0.2t} + c$	M1* (AO 1.1a) A1 (AO 1.1)	Integrate to obtain answer of correct form	may not be correct BOD if no integral signs, as long as integration is actually attempted Obtain integral of the form	
	$-9.97 = -5 + c \Rightarrow c = -4.97$ OR $-\frac{1}{400} = -\frac{5}{3988} + c \Longrightarrow c = -\frac{497}{398800}$	M1d* (AO 2.2a)	Obtain correct integral Attempt <i>c</i> from (0, 400) or (1, 440)	$aN^{1} = be^{-0.2t} + c$ or equiv Condone no + c Any equivalent form As far as attempting numerical value for c	

$\frac{3988}{N} = 5e^{-0.2t} + 4.97$ OR $\frac{1}{N} = \frac{5}{3988}e^{-0.2t} + \frac{497}{398800}$	M1d* (AO 1.1)	Attempt to make Nthe subject	NB (0, 400) gives –4.97, (1, 440) gives an answer which rounds to –4.97 Equation may no longer be correct Using correct algebraic processes throughout, but allow sign slips – this includes any	
$N = \frac{3988}{5e^{-0.2t} + 4.97}$	(AO 1.1) [6]	Correct equation for <i>N</i>	rearrangement attempt made prior to attempting <i>c</i> Must involve a <i>c</i> , either numerical or still as <i>c</i> Any correct equation of form $N = \dots$	

			Examiner's Comments Candidates identified the need before integrating and many m The majority of candidates cho was rather than incorporating i caused problems for some wh in a form that could be integrat most common error. When find integration most candidates op	to separate the variables ade a good attempt to do so. use to leave the 3988 where it t with the term in N . This en rewriting the right-hand side ted, with 3988e ^{-0.27} being the ding a value for the constant of oted to use the first condition	
			correct method to find <i>N</i> in terr error was to simply invert each equation.	ms of <i>t</i> , the most common of the three terms in their	
С	Model in (a) predicts that population will continue to increase	E1 (AO 3.5a)	Comment about continuing to increase	Allow comments such as tending to infinity Any additional comments must also be correct so E0 for eg 'will always increase at a steady rate' but E1 for 'will always increase but the rate of increase will	
	Model in (b) predicts that population will tend towards a limit of 802	E1 (AO 3.5a)	Comment about tending towards a limit of 802	decrease' Allow a limit of 803 or 802.4 Must come from a fully correct function	

			[2]	Ar cc als	ny additional omments must lso be correct	
				Examiner's Comments When considering the first model, ca to identify that it predicted that the pu- to increase and a number of candida Some spoilt an otherwise correct sta additional, incorrect detail such as in Only the most able candidates were the second model would predict that towards a limit and also identify the w was no credit for commenting on hor	candidates simply needed population would continue dates were able to do so. tatement by including increasing at a faster rate. e able to both identify that at the population will tend e value of the limit. There ow realistic each of the	
		Total	13	two models was, but some candidat	ates did consider this.	
10)	$(2x-1)^{3} \frac{dy}{dx} + 4y^{2} = 0$ $-\frac{1}{4} \int \frac{dy}{y^{2}} = \int \frac{dx}{(2x-1)^{3}}$ $\int \frac{dy}{y^{2}} = -\frac{1}{y}$ $\int \frac{dx}{(2x-1)^{3}} = \frac{(2x-1)^{-2}}{(2)(-2)}$	M1(AO 2.5)E A1(AO 1.1)E M1(AO 1.1)E A1(AO 1.1)C	Attempt to separate variables M1 for $k(2x - 1)^{-2}$		

$\frac{1}{4y} = -\frac{1}{4(2x-1)^2} + c, \ (1,1) \Longrightarrow c = \dots$	M1(AO 2.1)C			
$\frac{1}{y} = -\frac{1}{(2x-1)^2} + 2$ $\frac{1}{y} = \frac{2(2x-1)^2 - 1}{(2x-1)^2}$	A1(AO 2.2a)A M1(AO 3.1a)A	Use of (1, 1) to find <i>c</i> – dependent on the previous two M marks and substituted into correct form Oe	Or re–write in terms of y	
$y = \frac{(2x-1)^2}{2(2x-1)^2 - 1}$	M1(AO 1.1)A	Correct method for combining both terms on rhs (dependent on previous M mark) before	Remove tripledecker	
$y = \frac{4x^2 - 4x + 1}{8x^2 - 8x + 1}$	A1(AO 2.2a)A [9]	taking the reciprocal Taking the reciprocal (dependent on previous M marks) and making y the subject a = 4, b = 8	fractions	

_					
					Examiner's Comments The responses to this final question in the pure section were mixed with examiners reporting a mixture of excellent responses followed by those that struggled with both the integration and the resulting algebraic manipulation required to obtain the answer in the required form. While most correctly separated the variables and wrote $\begin{aligned} -\frac{1}{4} \int \frac{dy}{y^2} = \int \frac{dx}{(2x-1)^3} & \text{many}_{\text{candidates}} \\ \text{many}_{\text{candidates}} \\ \text{had issues with the placement of the fraction on the left-hand side with examiners reporting that frequently this became a 4 rather than remaining as a quarter. While many candidates correctly integrated and remembered to include an arbitrary constant many decided to re-arrange their equation before attempting to find this constant; candidates are advised that in the majority of situations it is probably wisest to work out the + c immediately. Of those that obtained a correct particular solution to this differential equation, for example, \frac{1}{y} = -\frac{1}{(2x-1)^2} + 2 \left[\begin{array}{c} \text{many did not} \\ \text{NOW} \end{array} \right] the correct method for obtaining the result for f(k) in therequired form. Many candidates took the reciprocal of eachterm separately rather than combining all relevant fractionsfirst before taking the reciprocal and then expanding thebrackets.$
			Total	9	
	11	а	$\int (2\cos^2 4y - 1) dy = \int x^2 \sin 2x dx$	M1 (AO 1.1a)	Separate variables
			$2\cos^2 4y - 1 = \cos 8y$	OA) IM	

		3.1a)	Attempt use of double angle formula	Obtain ±cos8 <i>y</i>	
	$\int \cos 8y \mathrm{d}y = \frac{1}{8} \sin 8y + c_1$	A1 (AO 1.1)			
	$\int x^2 \sin 2x dx = -\frac{1}{2}x^2 \cos 2x + \int x \cos 2x dx$	M1 (AO 3.1a)	Obtain correct integral	Condone no + <i>C</i> 1	
	$= -\frac{1}{2}x^{2}\cos 2x + \frac{1}{2}x\sin 2x - \int \frac{1}{2}\sin 2x dx$	M1 (AO 1.1)	Attempt integration by		
		A1 (AO 1.1)	parts once		
	$= -\frac{1}{2}x^{2}\cos 2x + \frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + c_{2}$ $\frac{1}{2}\sin 8y = -\frac{1}{2}x^{2}\cos 2x + \frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + c_{2}$	[6]	Attempt second integration by parts		
	8 2 4		Obtain correct integral	Condone no + C2	
b	$\sin\frac{8}{12}\pi = -4\left(\frac{1}{4}\pi\right)^2 \cos\frac{\pi}{2} + 4\left(\frac{1}{4}\pi\right)\sin\frac{\pi}{2} + 2\cos\frac{\pi}{2} + c.$	M1 (AO 1.1)	Attempt <i>c</i> , using $x = \frac{1}{4}\pi$, $y = \frac{1}{12}\pi$		
	$c = \frac{1}{2}\sqrt{3} - \pi$	A1 (AO 1.1)	Obtain		

		$\sin 8y = 2 + \frac{1}{2}\sqrt{3} - \pi$	M1 (AO 3.1a)	correct value for <i>c</i> for their correct equation Condone decimal equiv (–2.276)	$eg c = \pi - \frac{1}{2}\sqrt{3}_{if}$ their <i>c</i> on	
		8 <i>y</i> = (-0.279), 3.421 <i>y</i> = (-0.035), 0.428	A1 (AO 1.1)	Attempt positive value for y when x = 0	LHS, or $c = \pm \left(\frac{1}{16}\sqrt{3} - \frac{1}{8}\pi\right)$ if fractions not yet cleared	
		<i>y</i> = 0.428	[4]			
				Obtain correct value for <i>y</i>	AU IT extra values	
		Total	10			
12	а	$\frac{\mathrm{d}V}{\mathrm{d}t} = -kV$ $-20 = -k \times 500 \text{ so } k = 0.04$	B1(AO 3.3) B1(AO 3.3)	Set up correct differential equation Correct value for – may be seen	Allow k for $-k$ k Or $k = -0.04$	
			M1(AO 1.1)	later		

$\int -0.04 \mathrm{d}t = \int \frac{1}{V} \mathrm{d}V$	A1(AO 1.1) Separate variables
$-0.04t = \ln V + c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
<i>c</i> = –In500	$\begin{array}{c c} M1dep^{\star}(AO\\ 3.4) \end{array} \begin{array}{c} could still be in \\ terms of k \end{array} here \\ \end{array}$
$-0.04t = \ln 250 - \ln 500$	A1 (AO 3.3) Use $t = 0$, $V = 500$ to find c
<i>t</i> = 17.3 hours	Attempt to find t when $V = 250$
	B1(AO 3.3) Obtain 17.3 B1(AO 3.3) hours, or better Units needed
Alternate method	(17 hours and 20 17.3286 minutes)
$\frac{\mathrm{d}v}{\mathrm{d}t} = -kV$	1.1a)
$-20 = -k \times 500$ so $k = 0.04$	$\begin{array}{c c} M1(AO 3.4) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
T 250 1 $1V$	M1(AO 3.4) equation Correct value for k Or $k = -0.04$ A1(AO 1.1) - may be seen
$\int_{0}^{1} -0.04 dt = \int_{500}^{1} \frac{1}{V} dV$	A1(AO 3.4) later
	and attempt
	Use of $t = 0$, $V = Use of t limits 0$
	500 and $T(\text{accept } t = 1)$

	-0.04 T = -0.693 T = 17 hours		Use of $t = T$, $V =$ \hbar 250 (accept $t = \hbar$)Use of Vlimits 500 and 250 (either way round)Obtain 17.3 hours, or better
b	E.g. Assumes that temperature remains constant E.g. Assume that the snowball remains a sphere throughout	B1(AO 3.5b) [1]	Any valid assumption made
с	Not very realistic as volume never equals 0, so snowball never melts completely	B1(AO 3.5b) [1]	Consider long term prediction
	Total	9	