

The diagram shows the curve $y = x^{\frac{3}{2}} - 1$, which crosses the *x*-axis at (1, 0), and the tangent to the curve at the point (4, 7).

i. Show that
$$\int_{1}^{4} (x^{\frac{3}{2}} - 1) dx = 9\frac{2}{5}$$

[4]

ii. Hence find the exact area of the shaded region enclosed by the curve, the tangent and the *x*-axis.

[5]

The diagram shows the curve

$$y = e^{2x} - 18x + 15$$
.

The curve crosses the y-axis at P and the minimum point is Q. The shaded region is bounded by the curve and the line PQ.

i. Show that the x-coordinate of Q is ln3.

[3]

ii. Find the exact area of the shaded region.

[8]

3.

The diagram shows the curve $y = e^{3x} - 6e^{2x} + 32$.

i. Find the exact *x*-coordinate of the minimum point and verify that the *y*-coordinate of the minimum point is 0.

[4]

ii. Find the exact area of the region (shaded in the diagram) enclosed by the curve and the axes.

[4]

The diagram shows the curves $y = e^{2x}$ and $y = 8e^{-x}$. The shaded region is bounded by the curves and the *y*-axis. Without using a calculator,

i. solve an appropriate equation to show that the curves intersect at a point for which $x = \ln 2$,

[2]

[5]

[5]

[2]

[6]

ii. find the area of the shaded region, giving your answer in simplified form.

5. Show that $\int_0^{\frac{1}{4}\pi} \frac{1 - 2\sin^2 x}{1 + 2\sin x \cos x} dx = \frac{1}{2} \ln 2$

i. Use the quotient rule to show that the derivative of $\frac{\cos x}{\sin x}$ is $\frac{-1}{\sin^2 x}$.

ii. Show that $\int_{\frac{1}{6}\pi}^{\frac{1}{4}\pi} \frac{\sqrt{1+\cos 2x}}{\sin x \sin 2x} \, \mathrm{d}x = \frac{1}{2} \left(\sqrt{6} - \sqrt{2} \right)$

© OCR 2017. Page 3 of 19

[5]

8.

The diagram shows parts of the curves $y = 11 - x - 2x^2$ and $y = \frac{3}{x^3}$. The curves intersect at (1, 8) and (2, 1).

Use integration to find the exact area of the shaded region enclosed between the two curves.

[7]

9. A curve is defined by the parametric equations $x = \frac{2t}{1+t}$ and $y = \frac{t^2}{1+t}$, $t \neq -1$.

(a) (i) Show that the curve passes through the origin.

[1]

(ii) Find the *y*-coordinate when x = 1.

[1]

(b) Show that the area enclosed by the curve, the x-axis and the line x = 1 is given by

$$\int_{0}^{1} \frac{2t^{2}}{(1+t)^{3}} \, \mathrm{d}t.$$
 [5]

(c) In this question you must show detailed reasoning.

Hence use an appropriate substitution to find the exact area enclosed by the curve, the x-axis and the line x = 1.

[6]

The diagram shows a part *ABC* of the curve $y = 3 - 2x^2$, together with its reflections in the lines y = x, y = -x and y = 0.

Find the area of the shaded region.

[7]

12.

$$x = \ln(t^2 - 4), \quad y = \frac{4}{t^2}, \text{ where}$$

The diagram shows the curve with parametric equations t > 2.

The shaded region R is enclosed by the curve, the x-axis and the lines $x = \ln 5$ and $x = \ln 12$.

(a) Show that the area of R is given by

$$\int_{a}^{b} \frac{8}{t(t^2 - 4)} \mathrm{d}t,$$

where a and b are constants to be determined.

[4]

(b) In this question you must show detailed reasoning.

Hence find the exact area of R, giving your answer in the form $\ln k$, where k is a constant to be determined.

[8]

Find a cartesian equation of the curve in the form y = f(x).

[3]

END OF QUESTION paper

© OCR 2017. Page 6 of 19

Q	Question		Answer/Indicative content	Marks	Part marks and guidance		
1		i	$\int_{1}^{4} \left(x^{\frac{3}{2}} - 1 \right) dx = \left[\frac{2}{5} x^{\frac{5}{2}} - x \right]_{1}^{4}$	M1	Attempt integration	Increase in power by 1 for at least one term – allow the –1 to disappear	
		i		A1	Obtain fully correct integral	Coeff could be unsimplified eg $^{1}/_{2.5}$ Could have + c present	
		i	= (12.8 - 4) - (0.4 - 1)	M1	Attempt correct use of limits	Must be explicitly attempting F(4) ‱ F(1), either by clear substitution of 4 and 1 or by showing at least (8.8) – (–0.6) Allow M1 if + c still present in both F(4) and F(1), but M0 if their c is now numerical Allow use in any function other than the original	
		i	= 9 ² / ₅ AG	A1	Obtain 9 ² / ₅ Examiner's Comments This was very well answered with most candidates gaining full marks. As the answer was given candidates were expected to show sufficient detail in their method, including the use of limits. Some candidates were clearly aided by the answer being given and were able to go back and amend incorrect working, though they must ensure that this is done consistently throughout the entire solution.	AG, so check method carefully Allow ⁴⁷ / ₅ or 9.4	
		ii	$m = {}^3/_2 \times \sqrt{4} = 3$	M1*	Attempt to find gradient at (4, 7) using differentiation	Must be reasonable attempt at differentiation ie decrease the power by 1 Need to actually evaluate derivative at $x = 4$	

© OCR 2019. 12 of 40

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
ii	y = 3x - 5	M1d*	Attempt to find point of intersection of tangent with <i>x</i> -axis or attempt to find base of triangle	Could attempt equation of tangent and use $y = 0$ Could use equiv method with gradient eg $3 = {}^{7}/_{4-x}$ Could just find base of triangle using gradient eg $3 = {}^{7}/_{b}$
ii	tangent crosses <i>x</i> -axis at $(^{5}/_{3}, 0)$	A1	Obtain $x = {}^{5}I_{3}$ as pt of intersection or obtain ${}^{7}I_{3}$ as base of triangle	Allow decimal equiv, such as 1.7, 1.67 or even 1.6 www Allow M1M1A1 for $x = \frac{5}{3}$ with no method shown
	area of triangle = $\frac{1}{2} \times (4 - \frac{5}{3}) \times 7 = \frac{8^{1}}{6}$	M1d**	Attempt complete method to find shaded area	Dependent on both previous M marks Find area of triangle and subtract from $9^2/_5$ Must have $1 < \text{their } x < 4$, and area of triangle $< 9^2/_5$ If using $\int (3x - 5) dx$ then limits must be 4 and their x M1 for area of trapezium – area between curve and y -axis

© OCR 2019. 13 of 40

Question	Answer/Indicative content	Marks	Part marks and guidance		
ii	shaded area = $9^2/_5 - 8^1/_6 = 1^7/_{30}$	A1	Obtain 1 ⁷ / ₃₀ , or exact equiv Examiner's Comments This proved to be one of the most challenging questions on the paper. Whilst 25% of the candidates were able to provide accurate and concise solutions, 50% were unable to score any credit at all. Most candidates did seem to recognise that they needed to find the equation of the tangent, but many did not realise that differentiation was required to find the gradient. Of those who did find the correct equation, a number then just integrated this equation between 1 and 4, rather than appreciating that a different lower limit was required and that this would be given by the point of intersection of the tangent with the <i>x</i> -axis. Some of the more successful candidates drew a sketch graph and gave consideration to the area that was to be subtracted from the answer to part (i), but too many launched straight into calculations with seemingly no clear strategy.	A0 for decimal answer (1.23), unless clearly a recurring decimal (but not eg 1.2333)	
	Total	9			

© OCR 2019. 14 of 40

Qı	uestio	n	Answer/Indicative content	Marks	Part marks a	nd guidance
2		i	Differentiate to obtain 2e ^{2x} -18	B1		
		i	Equate first derivative to zero and use legitimate method to reach equation without e involved	M1		
		i	Confirm x = ln 3	A1	AG; necessary detail needed (in particular, for	
					solutions concluding	
					$x = \frac{1}{2} \ln 9 = \ln 3_{\text{or equiv}}$ award A0)	
					Examiner's Comments	
					The majority of candidates had no difficulty in realising that equating the first derivative to zero was needed. With the answer In 3 given in the question, solutions were expected to be sufficiently detailed. Many candidates failed to earn the final mark because their solutions went immediately from $x = \frac{1}{2} \ln 9 \text{ or } x = \frac{\ln 9}{2} \text{to x} = \ln 3.$	
		ii	Attempt integration	*M1	confirmed by at least one correct term	
		ii	Obtain $\frac{1}{2}e^{2x} - 9x^2 + 15x$	A1	or equiv	
		ii	Apply limits 0 and In 3 to obtain exact unsimplified expression	M1	dep *M	
		ii	Obtain 4 – 9(ln 3) ² + 15 ln 3	A1	or exact (maybe unsimplified) equiv perhaps still involving e	
					-	

© OCR 2019. 15 of 40

Question	Answer/Indicative content	Marks	Part marks ar	nd guidance
ii	Attempt area of trapezium or equiv, retaining exactness throughout	M1	using $\frac{1}{2}\ln 3 \times (y_1 + y_2)$ where y_1 is 15 or 16 and y_2 is attempt at y -coordinate of Q ; if using alternative approach involving rectangle and triangle, complete attempt needs to be seen for M1; another alternative approach	
			involves equation of $PQ (y = \frac{8-18 \ln 3}{\ln 3} x + 16)_{\text{with}}$ integration: M1 for attempting equation and integration, A1 for correct answer	
ii	Obtain $\frac{1}{2} \ln 3 \times (16 + 24 - 18 \ln 3)$	A1	or equiv perhaps still including e	
ii	Subtract areas the right way round, retaining exactness	M1	dep on award of all three M marks	
ii	Obtain 5 ln 3 – 4	A1	or similarly simplified exact equiv	
			Examiner's Comments	
			Most candidates were able to make some progress with this question but only 14% of candidates succeeded in recording full marks. The integration was usually carried out accurately but a few used incorrect limits such as In 3 and 16. It was quite common for the limit 0 to be ignored when evaluating the area under the curve. A considerable problem for many involved the term 9(In3) ² .	
			This was often carelessly written as 9ln3 ² and then 'simplified' to 9ln 9 or 18ln	

© OCR 2019. 16 of 40

© OCR 2019. 17 of 40

Qı	uestion	Answer/Indicative content	Marks	Part marks ar	nd guidance
3	i	State first derivative is $3e^{3x}$ – $12e^{2x}$	B1	Or equiv	
	i	Equate first derivative to zero and attempt solution of equation of form $k_1e^{3x} - k_2e^{2x} = 0$	M1	At least as far as $e^x = c$; M0 for false method such as $ln(3e^{3x}) - ln(12e^{2x}) = 0$	
	i	Obtain In 4 or exact equiv and no other	A1	Obtained by legitimate method	
	i	Substitute $x = \ln 4$ or $e^x = 4$ to confirm $y = 0$	A1	AG; using exact working with all detail present: needs sight of $4^3 - 6 \times 4^2 + 32$ or similar equiv	
	ii	Integrate to obtain $k_3e^{3x} + k_4e^{2x} + 32x$	M1	For non-zero constants	
	ii	Obtain $\frac{1}{3}e^{3x} - 3e^{2x} + 32x$ or equiv	A1		
	ii	Apply limits correctly to expression of form $k_3e^{3x} + k_4e^{2x} + 32x$	M1	Using limits 0 and their answer from part (i)	
	ii	Simplify to obtain 32 ln 4 – 24 or 64 ln 2 – 24	A1	Or suitably simplified equiv Examiner's Comments	
				For a question involving routine techniques, it was disappointing that only 37% of the candidates recorded all eight marks. Almost all candidates differentiated correctly in part (i) but then many struggled to find the x -coordinate of the minimum point. The equation $3e^{3x} - 12e^{2x} = 0$ prompted some to a next incorrect step of $\ln(3e^{3x}) - \ln(12e^{2x}) = 0$; others followed $\ln e^{3x} = \ln 4e^{2x}$ with $3x = 2x\ln 4$. Those with an approach involving factorisation such as $3e^{2x}(e^x - 4) = 0$ often included extra	

© OCR 2019. 18 of 40

Question	Answer/Indicative content	Marks	Part marks and guidance
			incorrect roots such as 0 or $\frac{1}{2}$. Confirmation that the minimum point lies on the x -axis required a little more detail than the mere statement $e^{3\ln 4} - 6e^{2\ln 4} + 32 = 0$ and, as a result, some candidates did not earn the final mark of part (i). Some candidates also found the second derivative but no confirmation that the stationary point is indeed a minimum was needed. There was more success with part (ii). Integration was handled efficiently and the area was produced in a suitably simplified form. There were occasional sign errors and some answers were not exact. Surprisingly, there were a few cases where $\int \pi y^2 dx$ was attempted.
	Total	8	

© OCR 2019. 19 of 40

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and guidance		
4		i	Either State $e^{2x} = 8e^{-x}$ and so $e^{3x} = 8$	B1		Verifying by substitution of In2 in each equation earns B0B0	
		i	Obtain $e^x = 2$ and hence $x = \ln 2$	B1	AG; necessary detail needed		
		İ	Or 1 State $e^{2x} = 8e^{-x}$ and so $e^{3x} = 8$	B1			
		i	State $3x = 1n8$, $x = 1n8^{\frac{1}{3}}$ and hence $x = 1n2$	B1	AG; necessary detail needed	Going immediately from $x = \frac{1}{3} \ln 8$ to $x = \ln 2$ does not earn the second B1	
		i	Or 2 State $e^{2x} = 8e^{-x}$ and $2x$ = $1n8 - x$	B1			
		i	State $3x = \ln 8$, $x = \ln 8^{\frac{1}{3}}$ and hence $x = \ln 2$	B1	AG; necessary detail needed	Going immediately from $x = \frac{1}{3}$ 1n8 to $x = 1$ n2 does not earn the second B1	
		ii	Integrate to obtain K_1e^{-x} and k_2e^{2x}	M1	Any non-zero constants k_1 and k_2		
		ii	Obtain correct $-8e^{-x} - \frac{1}{2}e^{2x}$ or, if done separately, $-8e^{-x}$ and $\frac{1}{2}e^{2x}$	A1			
		ii	Apply limits 0 and ln2 correctly to their integral(s)	M1	Condone one sign slip; earned by sight of $-8e^{-\ln 2} - \frac{1}{2}e^{2\ln 2} + 8 + \frac{1}{2} \text{(or equivs if integrals treated separately)}$	M1 also implied by sight only of $-4 - 2 + \frac{1}{2}$ (or equivs)	
		ii	Obtain at least $-4 - 2 + 8 + \frac{1}{2}$ (or equivs)	*A1			

© OCR 2019. 20 of 40

Question	Answer/Indicative content	Marks	Part marks and guidance
Question	Answer/Indicative content Obtain $\frac{5}{2}$ or equiv	Marks A1	Final A1 dependent on *A1 Examiner's Comments In order for particular skills to be assessed, this question required candidates to answer both parts without the use of a calculator. This meant that sufficient detail had to be shown in solutions and many candidates lost some credit for not providing all the necessary steps. The candidate offering only $\int_0^{\ln 2} e^{2x} dx = \frac{3}{2} as part of$ the solution in part (ii) did not earn many marks. Part (i) specified the use of an appropriate equation and therefore candidates showing that both curves had the same <i>y</i> -coordinate of 4 when $x = \ln 2$ did not
			Part (i) specified the use of an appropriate equation and therefore candidates showing that both curves had the same <i>y</i> -coordinate
			basic errors in the application of logarithms to both sides of the equation. It was disappointing that only 52% of candidates earned both marks in part (i). Although 64% of the

© OCR 2019. 21 of 40

Question	Answer/Indicative content	Marks	Part marks and guidance
			candidates earned all the marks in part (ii), surprising problems were revealed by some of the solutions from other candidates. The trapezium rule was used in some cases for finding the area under one of the curves and incorrect limits were sometimes seen. There were also attempts to treat the region as one between the curves and the <i>y</i> -axis; this is a possible method although it involves integration techniques from Core Mathematics 4 and the attempts seldom succeeded. With the instruction to answer this part without the use of a calculator, candidates needed to show sufficient detail in their solutions. Most did so although some lost marks through a failure to show clearly how, for example, $\frac{1}{2}e^{2\ln 2}$ becomes 2.
	Total	7	

© OCR 2019. 22 of 40

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
5	$\int \frac{\cos 2x}{1+\sin 2x} (\mathrm{d}x)$	B1*	$\cos 2x = 1 - 2\sin^2 x$ or $(1 +)\sin 2x = (1 +) 2\sin x \cos x$ seen	if B0B0M0A0, SC4 for $F[x] = \frac{1}{2}\ln(1 + 2\sin x \cos x) \text{ or } \frac{1}{2}\ln(1 + \sin 2x)$
		B1*		final mark may still be awarded
			numerator and denominator both correct in the integral soi	
	$F[x] = k \ln(1 + \sin 2x) \text{ soi}$	M1dep*	or kln(1 + u) or kln(u) following their substitution www	
	$k = \frac{1}{2}$	A1	correct <i>k</i> for their substitution	
	$\frac{1}{2}\ln(1+\sin(\pi/2))-\frac{1}{2}\ln(1+0)$	A1 AG	correct use of limits www	minimum working: $\frac{1}{2}\ln 2 - \frac{1}{2}\ln 1$ or $\frac{1}{2}\ln (1+1)$ oe
	$=\frac{1}{2}\ln 2$		Examiner's Comments	
			Most candidates recognised at least one of the double angle substitutions, and many went on to spot the correct form of the integral and score full marks. A surprising number achieved the correct integrand, however, and then failed to progress. Incorrect splitting of the fraction such as ∫(cos2x + cot2x) dx and substitutions which went astray were fairly common. A small number of candidates didn't bother with double angles, but differentiated the numerator and spotted the logarithmic form, often going on to achieve full marks.	
	Total	5		

© OCR 2019. 23 of 40

Qı	uestior	า	Answer/Indicative content	Marks	Part marks and guidance			
6		i	$\frac{\sin x \times -\sin x - \cos x \times \cos x}{\sin^2 x}$ may be implied by $\frac{-\sin^2 x - \cos^2 x}{\sin^2 x}$	M1	or $-\sin x \times \frac{1}{\sin x}$ + $\cos x \times -(\sin x)^{-2} \times \cos x$ oe	allow sign errors only if M0, SC1 for just $\frac{-\sin^2 x - \cos^2 x}{\sin^2 x} = \frac{-1}{\sin^2 x}$		
		i	eg $= \frac{-(\sin^2 x + \cos^2 x)}{\sin^2 x}$ and completion to $\frac{-1}{\sin^2 x} AG$	A1	eg $= \frac{-\sin^2 x}{\sin^2 x} - \frac{\cos^2 x}{\sin^2 x} \text{ oe}_{and}$ completion to $\frac{-1}{\sin^2 x}$	need to see at least two correct, constructive steps and statement of given answer for A1 NB $\sin^2 x + \cos^2 x = 1$ seen may be a constructive intermediate step		
		i			Examiner's Comments This was very well-done, with most candidates achieving full marks. A few showed insufficient working and lost a mark, and a small minority either misquoted the Quotient Rule or the relevant trigonometric identity.			
		ii	$\cos 2x = 2\cos^2 x - 1$ substituted in numerator	M1	or alternative form of double angle formula plus Pythagoras leading to no term in sin ² x in numerator	may be awarded if not seen as part of fraction		
		ii	sin2x = 2sinxcosx substituted in denominator	M1				
		ii	$\frac{\sqrt{2}\cos x}{2\sin^2 x\cos x}$	A1		$NB \int_{\frac{1}{6}\pi}^{\frac{1}{4}\pi} \frac{1}{\sqrt{2}\sin^2 x} dx$		
		ii	$F[x] = \pm k \frac{\cos x}{\sin x}$	M1*	k must not be obtained from square rooting a negative number	$NB - \frac{\cos x}{\sqrt{2}\sin x}$		

© OCR 2019. 24 of 40

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
ii	$F\left[\frac{1}{4}\pi\right] - F\left[\frac{1}{6}\pi\right]$	M1dep*	$\operatorname{eg} \frac{-\cos \frac{\pi}{4}}{\sqrt{2} \times \sin \frac{\pi}{4}} - \frac{-\cos \frac{\pi}{6}}{\sqrt{2} \times \sin \frac{\pi}{6}}$	$\operatorname{eg} \frac{-\frac{1}{\sqrt{2}}}{\sqrt{2} \times \frac{1}{\sqrt{2}}} - \frac{-\frac{\sqrt{3}}{2}}{\sqrt{2} \times \frac{1}{2}}$
				at least one correct intermediate step following substitution needed as well as statement of given result
				$\operatorname{eg} - \frac{\sqrt{2}}{2}(1 - \sqrt{3})$
ii	$= \frac{1}{2}(\sqrt{6} - \sqrt{2}) \text{ www } \mathbf{AG}$	A1		
ii			Examiner's Comments	
			A surprisingly high proportion of candidates did not recognise that double angle formulae were needed here, and went round in circles trying to use integration by parts or achieve a logarithmic form. Some of those who did successfully use the correct identities to produce a multiple of the function in part (ii) didn't make the connection between the two parts and either ran out of steam or produced reams of incorrect work. bryThat said, there were many examples of excellent work: well-presented, succinct solutions with sufficient detail to meet the show that demand.	
	Total	8		

© OCR 2019. 25 of 40

Q	uestio	n	Answer/Indicative content	Marks	Part marks a	nd guidance
7			cos8x seen in integrand	M1		
			$F[x] = Ax + B\sin 8x \text{ oe}$	M1*	A and B are non-zero constants	
			$F[x] = 6x - \frac{3}{8}\sin 8x$	A1		
			$F[x] = 6x - \frac{3}{8}\sin 8x$ $F\left[\frac{1}{8}\pi\right] - F\left[\frac{1}{16}\pi\right]$	M1*dep		
			$\frac{3}{8}\pi + \frac{3}{8}$ oe	A1		allow eg 0.375π + 0.375 or fractions not in lowest terms
						Examiner's Comments
						Most candidates realised the need to use the appropriate double angle formula and successfully integrated to obtain an expression involving sin8x. Sign errors were quite common, however, and 12x was commonly seen. A few candidates worked with $\cos^2 x$ and didn't score. A significant minority had no idea how to deal with $\cos^2 4x$ and tried to integrate directly.
			Total	5		

© OCR 2019. 26 of 40

Question	Answer/Indicative content	Marks		Part marks and guidance
8	$\int (11 - x - 2x^2) dx = 11x - \frac{1}{2}x^2 - \frac{2}{3}x^3$ $\int 8x^{-3} dx = -4x^{-2}$ $(22 - 2 - \frac{16}{3}) - (11 - \frac{1}{2} - \frac{2}{3}) = \frac{29}{6}$	M1 A1	Attempt integration of 11 – x – $2x^2$	Increase in power by 1 for at least 2 terms Obtain
	(-1) - (-4) = 3	M1	Obtain $11x - \frac{1}{2}x^2 - \frac{2}{3}x^3$ Attempt integration of $8x^{-3}$	correct integral
	$^{29}/_6 - 3 = ^{11}/_6$	A1 M1	Obtain -4x ⁻²	Integrate to kx^2
			Use limits of $x = 1, 2$	Allow
		M1	Attempt correct method to	unsimplifie
		A1	find shaded area (at any point)	d coeff In both integrals Must follow
		[7]	Obtain 11/6-or exact equiv	clear attempt at integration Must be F(2) – F(1) ie correct order and subtraction
				M0 if incorrect order of subtraction, even if $^{11}/_{6}$ subsequent ly appears

© OCR 2019. 27 of 40

Question	Answer/Indicative content	Answer/Indicative content Marks		Part marks and guidance	Part marks and guidance	
			as final			
			answer			
			M1 can			
			follow M0			
			for use of			
			limits			
			A0 for			
			decimal			
			answer			
			unless			
			clearly a			
			recurring			
			decimal			
			(but not eg			
			1.833)			
			ISW if ¹¹ / ₆			
			seen but			
			then			
			followed by			
			eg 1.83			
			Answer			
			only is 0/7 -			
			need to see			
			evidence of			
			integration,			
			but use of			
			limits does			
			not need to			
			be explicit			
			Alternative			
			MS for			
			subtracting			
			first:			
			M1 -			
			attempt			
			subtraction			
			in correct			
			order			
			M1 -			
			attempt			
			integration			
			of			
			$\begin{array}{ c c c c c } \pm (11 - x - \\ 2x^2) \end{array}$			
			$ 2x^2 $			
			A1 - obtain			

© OCR 2019. 28 of 40

Question	Answer/Indicative content	Part marks and guidance	
			$\pm (11x^{-1}/_2x^2 - ^2/_3x^3),$
			signs must
			be
			consistent
			with their
			subtraction
			M1 -
			attempt
			integration
			of
			$\pm 8x^{-3}$
			A1 - obtain
			$\mp 4x^{-2}$, sign
			must be
			consistent with their
			subtraction M1 -
			correct use
			of limits in
			entire
			integral
			A1 - obtain
			11/ ₆
			Ignore sight of 11 – x –
			$2x^2 = 8x^{-3}$
			prior to
			subtraction
			occurring
			occurring
			Adding
			functions
			prior to
			integration
			will get max
			of 5 marks
			- M0M1A1
			M1A1M1A0
			(Alt MS) –
			to give
			same credit
			as
			integrating
			separately,
			using limits
			and then
			adding
			Multiplying

© OCR 2019. 29 of 40

Question	Answer/Indicative content	Marks	Part marks and guidance
			through by
			x^3 prior to
			integration
			can get M1
			for use of
			limits, and
			possibly
			M1 if
			subtraction
			happens
			before
			multiplying
			through
			Examiner's Comments This fairly standard
			integration question was
			very well answered by
			many candidates. The
			integration was usually
			· · ·
			accurate, especially of the
			quadratic curve. Candidates
			were usually able to write
			the reciprocal curve in an
			appropriate form, but it was
			a relatively common error
			for the index to decrease
			rather than increase.
			Candidates were then able
			to use limits accurately to
			evaluate their definite
			integral. The most common
			approach was to find two
			separate areas, and then
			find the difference to get the
			shaded area. This method
			invariably resulted in the
			correct answer, whereas
			candidate who subtracted
			before integrating
			sometimes did so in the
			incorrect order. A minority
			of candidates decided to
			multiply through by x ³
			before integrating, whilst
			1
			the actual integration may
			be easier they did not
			appreciate that they were
			no longer dealing with the

© OCR 2019. 30 of 40

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance		
					original functions.		
			Total	7			

© OCR 2019. 31 of 40

Qı	uestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
9		а	(a) when x = 0, t = 0 and hence y = 0	E1(AO2. 4) [1]	Justify (0, 0) convincingl y		
		а	(b) when x = 1, t = 1 and hence y = 0.5	B1(AO1. 1) [1]	Obtain <i>y</i> = 0.5		
		b	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2}{(1+t)^2}$ $\int \frac{t^2}{1+t} \mathrm{d}x = \int \frac{t^2}{1+t} \times \frac{2}{(1+t)^2} \mathrm{d}t$ $= \int \frac{2t^2}{(1+t)^3} \mathrm{d}t$	M1(AO2. 1) A1(AO2. 1) M1(AO2. 1) A1(AO2. 4) [5]	Attempt $\frac{dx}{dt}$ Obtain correct derivative Use $\int y dx = \int y \frac{dx}{dt} dt$ Obtain given answer Justify t -limits from $x = 0, 1$	Using quotient rule, or other valid method $x = 0: \frac{2t}{1+t} = 0 \text{ so } t = 0$ $x = 1: \frac{2t}{1+t} = 1$ $2t = 1 + t$ $so t = 1$	

© OCR 2019. 32 of 40

Question	Answer/Indicative content	Marks		Part marks a	nd guidance
c	DR use $u = 1 + t$ giving $du = dt$ $\int \frac{2t^2}{(1+t)^3} dt = \int \frac{2(u-1)^2}{u^3} du$ $= \int 2u^{-1} - 4u^{-2} + 2u^{-3} du$ $= \left[2\ln u + 4u^{-1} - u^{-2}\right]_1^2$ $= (2\ln 2 + 2 - 0.25) - (2\ln 1 + 4 - 1)$ $= 2\ln 2 - \frac{5}{4}$	E1(AO1. 1a) M1(AO1. 1a) A1(AO1. 1a) M1(AO1. 1a) A1(AO1. 1) [6]	Must be stated explicitly Attempt to change integrand to function of <i>u</i> Obtain correct integrand Attempt integration Attempt use of limits <i>u</i> = 1, 2 Obtain correct exact area	Any equivalent form Allow any exact equiv	
	Total	13			

© OCR 2019. 33 of 40

Qı	Question		Answer/Indicative content		Marks	Part marks a	nd guidance
10			$5x - x^2 = 2x$ $(x^2 - 3x = 0 \text{ or } 3$ x = 0 or 3 $\int_0^3 (5x - x^2) dx$ (= 13.5)	or $5x - x^2 - 2x$ or $\int_0^3 (3x - x^2) dx$	M1(AO3. 1a) A1(AO1. 1) M1(AO1. 1a)		
			Total		5		

© OCR 2019. 34 of 40

Question	Answer/Indicative content	Marks	Part marks and guidance		
11	Summary of marks: Attempt find x at intersection of curves x = 1 Correct integral, any limits Correct numerical result Attempt area of part or all of 2 × 2 square Wholly correct method	M1 (AO 3.1a) A1 (AO 1.1) M1 (AO 3.1a) A1 (AO 1.1) M1 (AO 1.1) M1 (AO 2.1) A1 (AO 1.1)	Can be implied from correct limits		
	Examples of methods: Method 1 $3-2x^2 = x$ $2x^2 + x - 3 = 0$ x = 1 $\int_0^1 (3-2x^2) dx$ or $\int_{-1}^1 (3-2x^2) dx$ $= \left[3x - \frac{2x^2}{3}\right]_0^1$ or $\left[3x - \frac{2x^3}{3}\right]_{-1}^1$ $= \frac{7}{3}$ or $\frac{14}{3}$ or	[7] M1 A1 M1 M1 A1	Ignore other root Correct integrand with any limits Attempt area above $y = 1$ or above $y = x$	or $3 - 2x^2 = -x$ $2x^2 - x - 3 = 0$ $x = -1$ o "\frac{14}{3}" - 1 (= \frac{11}{3}) r $4 \times \frac{11}{3}$	
	Method 2 $3 - 2x^{2} = x$ $x = 1$ $\int_{1}^{3} \left(\frac{y-3}{2}\right)^{\frac{1}{2}} dy$ $= \dots$	M1 A1 M1	Complete correct method		

© OCR 2019. 35 of 40

Question	Answer/Indicative content	Marks	Part marks and guidance	
	4	A1	Method 3	
	$=\frac{4}{3}$	M1	$3 - 2x^{2} = x$ $x = 1$ $\int_{0}^{1} (3 - 2x^{2} - 1) dx$	
	$\frac{4}{3} + \frac{1}{2} \ (= \frac{11}{6})$	M1	$x = 1$ $\int_{0}^{1} (3 - 2x^{2} - 1) dx$ $= \left[2x - \frac{2x^{3}}{3} \right]_{0}^{1}$	
	$8 \times \frac{11}{6}$ $= \frac{44}{3}$	A1	$=\frac{4}{3}$	
	3	711	$\frac{4}{3} + \frac{1}{2} \ (= \frac{11}{6})$	
			$8 imes rac{11}{6}$ Other correct methods may be seen	
			Examiner's Comments	
			A large variety of correct methods were seen. Some were unnecessarily long. Examples of correct, although long, methods were these:	
			1. Find the inverse function in order to find the equation of the reflection of the given curve in <i>y</i> = <i>x</i> . Then solve this with the given function in order to find the point of intersection, <i>C</i> .	
			2. Rearrange the given function to make x the subject and then find $\int x dy$.	
			Some candidates found the points where the given curve cuts the <i>x</i> -axis and hence integrated with incorrect limits. Many made mistakes in trying either to add or subtract all or part of the area of the middle	

© OCR 2019. 36 of 40

Q	Question		Answer/Indicative content	Marks	Part marks and guidance	
					square. Perhaps the neatest method was $1 \times (3-2x^2-1)dx + 4 \times (1-1)dx + 4$	
			Total	7		

© OCR 2019. 37 of 40

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance		
12		а	$x = \ln(t^2 - 4) \Rightarrow \frac{dx}{dt} = \frac{2t}{t^2 - 4}$		Attempt diff erentiation of <i>x</i> using chain rule – must be of the for kt		
			Area = $\int \frac{4}{t^2} \left(\frac{2t}{t^2 - 4} \right) dt$	M1 (AO 1.1a)	for $\frac{kt}{t^2-4}$ m Use $\int y \frac{dx}{dt} dt$		
			$=\int \frac{8}{t(t^2-4)} \mathrm{d}t$	A1 (AO 2.2a)	of with $\frac{\mathrm{d}x}{\mathrm{d}t}$		
			a = 3, b = 4	B1 (AO 2.2a)	their		
				[4]	AG		
					Correct limits		
					·		

© OCR 2019. 38 of 40

Question	Answer/Indicative content	Marks	Part marks and guidance
b	$\frac{DR}{\frac{8}{t(t^2 - 4)}} = \frac{A}{t} + \frac{B}{t - 2} + \frac{C}{t + 2}$	B1 (AO 3.1a)	Correct form of partial
	8 = A(t-2)(t+2) + Bt(t+2) + Ct(t-2)	M1 (AO 1.1a)	fractions Cover up, substituting or equating coefficients
	$A = -2, B = 1, C = 1$ $\int \left(-\frac{2}{t} + \frac{1}{t-2} + \frac{1}{t+2}\right) dt = -2\ln t + \ln(t-2) + \ln(t+2)$	A2 (AO 1.1,1.1) M1* (AO 1.1)	 must be a complete method for finding one of A, B or C A1 for one
	(-2ln4 + ln2 + ln6) - (-2ln3 + ln1 + ln5)	M1dep* (AO 1.1) M1 (AO 2.1)	correct Attempt to integrate all three terms — must be of the form
	$I\left(\frac{27}{20}\right)$ n	A1 (AO 2.2a) [8]	$a \ln t + \beta$ $\ln(t-2) + \gamma$ $\ln(t+2)$ Applying their limits correctly Correctly combining all their log terms – dependent on both previous M marks $k = \frac{27}{20}$

© OCR 2019. 39 of 40

Question	Answer/Indicative content	Marks	Part marks and guidance		
С	$t^{2} = \frac{4}{y} \Rightarrow x = \ln\left(\frac{4}{y} - 4\right)$ $e^{x} = \frac{4}{y} - 4 \Rightarrow y = K$ $y = \frac{4}{e^{x} + 4}$ Alternative solution $e^{x} = t^{2} - 4$	M1* (AO 3.1a) M1dep* (AO 1.1) A1 (AO 1.1)	Re-arrange and eliminate <i>t</i> Remove logs and attempt to make <i>y</i> the subject		
	$t^{2} = e^{x} + 4 \Rightarrow y = K$ $y = \frac{4}{e^{x} + 4}$	M1dep* A1 [3]	Remove logs Rearrange and eliminate t		
	Total	15			

© OCR 2019. 40 of 40