1. 



The diagram shows the curve $y=x^{\frac{3}{2}}-1$, which crosses the $x$-axis at $(1,0)$, and the tangent to the curve at the point $(4,7)$.
i. Show that $\int_{1}^{4}\left(x^{\frac{3}{2}}-1\right) \mathrm{d} x=9 \frac{2}{5}$.
ii. Hence find the exact area of the shaded region enclosed by the curve, the tangent and the $x$-axis.
2.


The diagram shows the curve

$$
y=\mathrm{e}^{2 x}-18 x+15
$$

The curve crosses the $y$-axis at $P$ and the minimum point is $Q$. The shaded region is bounded by the curve and the line $P Q$.
i. Show that the $x$-coordinate of $Q$ is $\ln 3$.
ii. Find the exact area of the shaded region.
3.


The diagram shows the curve $y=\mathrm{e}^{3 x}-6 \mathrm{e}^{2 x}+32$.
i. Find the exact $x$-coordinate of the minimum point and verify that the $y$-coordinate of the minimum point is 0 .
ii. Find the exact area of the region (shaded in the diagram) enclosed by the curve and the axes.
4.


The diagram shows the curves $y=\mathrm{e}^{2 x}$ and $y=8 \mathrm{e}^{-x}$. The shaded region is bounded by the curves and the $y$-axis. Without using a calculator,
i. solve an appropriate equation to show that the curves intersect at a point for which $x=$ In 2,
ii. find the area of the shaded region, giving your answer in simplified form.
5.

Show that $\int_{0}^{\frac{1}{4} \pi} \frac{1-2 \sin ^{2} x}{1+2 \sin x \cos x} \mathrm{~d} x=\frac{1}{2} \ln 2$.
6.
i. Use the quotient rule to show that the derivative of $\frac{\cos x}{\sin x}$ is $\frac{-1}{\sin ^{2} x}$.
ii. Show that $\int_{\frac{1}{6} \pi}^{\frac{1}{4} \pi} \frac{\sqrt{1+\cos 2 x}}{\sin x \sin 2 x} \mathrm{~d} x=\frac{1}{2}(\sqrt{6}-\sqrt{2})$.
7.

Use integration to find the exact value of $\int_{\frac{1}{16} \pi}^{\frac{1}{8} \pi}\left(9-6 \cos ^{2} 4 x\right) \mathrm{d} x$.
8.


The diagram shows parts of the curves $y=11-x-2 x^{2}$ and $y=\frac{8}{x^{3}}$. The curves intersect at $(1,8)$ and $(2,1)$.
Use integration to find the exact area of the shaded region enclosed between the two curves.
9. A curve is defined by the parametric equations $x=\frac{2 t}{1+t}$ and $y=\frac{t^{2}}{1+t}, t \neq-1$.
(a) (i) Show that the curve passes through the origin.
(ii) Find the $y$-coordinate when $x=1$.
(b) Show that the area enclosed by the curve, the $x$-axis and the line $x=1$ is given by

$$
\int_{0}^{1} \frac{2 t^{2}}{(1+t)^{3}} \mathrm{~d} t
$$

(c) In this question you must show detailed reasoning.

Hence use an appropriate substitution to find the exact area enclosed by the curve, the $x$-axis and the line $x=1$.
11. The diagram shows a part $A B C$ of the curve $y=3-2 x^{2}$, together with its reflections in the lines $y=x, y=-x$ and $y=0$.


Find the area of the shaded region.
12.


The diagram shows the curve with parametric equations $x=\ln \left(t^{2}-4\right), \quad y=\frac{4}{t^{2}}$, where $t>2$.

The shaded region $R$ is enclosed by the curve, the $x$-axis and the lines $x=\ln 5$ and $x=\ln 12$.
(a) Show that the area of $R$ is given by

$$
\int_{a}^{b} \frac{8}{t\left(t^{2}-4\right)} \mathrm{d} t
$$

where $a$ and $b$ are constants to be determined.
(b) In this question you must show detailed reasoning.

Hence find the exact area of $R$, giving your answer in the form In $k$, where $k$ is a constant to be determined.
(c) Find a cartesian equation of the curve in the form $y=\mathrm{f}(x)$.



| Question |  | Answer/ndicative content | Marks | Part marks and guidance |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  | ii <br> $1^{7} / 30$ |




| Question |  | Answer/Indicative content | Marks | Part marks and guidance |
| :--- | :--- | :--- | :--- | :--- |

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& Answer/Indicative content \& Marks \& Part marks a \& d guidance \\
\hline 3 \& i
i

i

i \& \begin{tabular}{l}
State first derivative is $3 e^{3 x}$ $-12 e^{2 x}$ \\
Equate first derivative to zero and attempt solution of equation of form $\mathrm{k}_{1} \mathrm{e}^{3 x}$ -
$$
\mathrm{k}_{2} \mathrm{e}^{2 x}=0
$$ \\
Obtain $\ln 4$ or exact equiv and no other \\
Substitute $x=\ln 4$ or $\mathrm{e}^{x}=4$ \\
to confirm $y=0$

 \& 

B1 \\
M1 \\
A1 \\
A1

 \& 

Or equiv \\
At least as far as $\mathrm{e}^{x}=c$; M0 for false method such as $\ln \left(3 e^{3 x}\right)-\ln \left(12 e^{2 x}\right)=0$ \\
Obtained by legitimate method \\
AG; using exact working with all detail present: needs sight of $4^{3}-6 \times 4^{2}+$ 32 or similar equiv
\end{tabular} \& \\

\hline \& ii
ii
ii

ii \& \begin{tabular}{l}
Integrate to obtain $k_{3} \mathrm{e}^{3 x}+$ $k_{4} \mathrm{e}^{2 x}+32 x$ \\
Obtain $\frac{1}{3} \mathrm{e}^{3 x}-3 \mathrm{e}^{2 x}+32 x$ or equiv \\
Apply limits correctly to expression of form $k_{3} \mathrm{e}^{3 x}+$ $k_{4} \mathrm{e}^{2 x}+32 x$ \\
Simplify to obtain 32 In 4 24 or 64 In $2-24$

 \& 

M1 \\
A1 \\
M1 \\
A1

 \& 

For non-zero constants \\
Using limits 0 and their answer from part (i) \\
Or suitably simplified equiv \\
Examiner's Comments \\
For a question involving routine techniques, it was disappointing that only $37 \%$ of the candidates recorded all eight marks. Almost all candidates differentiated correctly in part (i) but then many struggled to find the $x$-coordinate of the minimum point. The equation $3 \mathrm{e}^{3 x}-12 \mathrm{e}^{2 x}=0$ prompted some to a next incorrect step of $\ln \left(3 e^{3 x}\right)$ $\ln \left(12 e^{2 x}\right)=0$; others followed $\ln e^{3 x}=\ln 4 \mathrm{e}^{2 x}$ with $3 x=2 x \ln 4$. Those with an approach involving factorisation such as $3 e^{2 x}\left(e^{x}\right.$ $-4)=0$ often included extra
\end{tabular} \& \\

\hline
\end{tabular}

| Question | Answer/Indicative content | Marks | Part marks and guidance |
| :---: | :---: | :---: | :---: |
|  |  |  | incorrect roots such as 0 or <br> $\frac{1}{2}$. Confirmation that the minimum point lies on the $x$-axis required a little more detail than the mere statement $e^{3 \ln 4}-6 e^{2 \ln 4}+32$ $=0$ and, as a result, some candidates did not earn the final mark of part (i). Some candidates also found the second derivative but no confirmation that the stationary point is indeed a minimum was needed. <br> There was more success with part (ii). Integration was handled efficiently and the area was produced in a suitably simplified form. <br> There were occasional sign errors and some answers were not exact. <br> Surprisingly, there were a <br> few cases where $\int \pi y^{2} \mathrm{~d} x$ was attempted. |
|  | Total | 8 |  |




| Question |  | Answer/Indicative content | Marks | Part marks and guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | candidates earned all the <br> marks in part (ii), surprising <br> problems were revealed by <br> some of the solutions from <br> other candidates. The <br> trapezium rule was used in <br> some cases for finding the <br> area under one of the <br> curves and incorrect limits <br> were sometimes seen. <br> There were also attempts to <br> treat the region as one <br> between the curves and the <br> $y-a x i s ; ~ t h i s ~ i s ~ a ~ p o s s i b l e ~$ |  |
| method although it involves |  |  |  |  |
| integration techniques from |  |  |  |  |
| Core Mathematics 4 and |  |  |  |  |
| the attempts seldom |  |  |  |  |
| succeeded. With the |  |  |  |  |
| instruction to answer this |  |  |  |  |
| part without the use of a |  |  |  |  |
| calculator, candidates |  |  |  |  |
| needed to show sufficient |  |  |  |  |
| detail in their solutions. |  |  |  |  |
| Most did so although some |  |  |  |  |
| lost marks through a failure |  |  |  |  |
| to show clearly how, for |  |  |  |  |
| example,$\frac{1}{2} e^{21 n 2}$ becomes <br> 2. |  |  |  |  |



\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Answer/Indicative content
\[
\frac{\sin x \times-\sin x-\cos x \times \cos x}{\sin ^{2} x}
\] \\
may be implied by
\[
\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x}
\] \\
eg
\[
=\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x} \text { and }
\] \\
completion to
\[
\frac{-1}{\sin ^{2} x} \mathrm{AG}
\]
\end{tabular}} \& \begin{tabular}{l}
Marks \\
M1
\end{tabular} \& \multicolumn{2}{|c|}{Part marks and guidance} \\
\hline 6 \& i

i

i \& \& M1

A1 \& \begin{tabular}{l}
$$
\begin{aligned}
& \text { or }-\sin x \times \frac{1}{\sin x} \\
& +\cos x \times-(\sin x)^{-2} \times \cos x \text { oe }
\end{aligned}
$$ \\
eg
$$
=\frac{-\sin ^{2} x}{\sin ^{2} x}-\frac{\cos ^{2} x}{\sin ^{2} x} \text { oe and }
$$ \\
completion to
$$
\frac{-1}{\sin ^{2} x}
$$ \\
Examiner's Comments \\
This was very well-done, with most candidates achieving full marks. A few showed insufficient working and lost a mark, and a small minority either misquoted the Quotient Rule or the relevant trigonometric identity.

 \& 

allow sign errors only if M0, SC1 for just

$$
\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x}=\frac{-1}{\sin ^{2} x}
$$ \\

need to see at least two correct, constructive steps and statement of given answer for A1 NB $\sin ^{2} x+\cos ^{2} x=1$ seen may be a constructive intermediate step
\end{tabular} \\

\hline \& ii
ii
ii

ii \& \begin{tabular}{l}
$$
\cos 2 x=2 \cos ^{2} x-1
$$ \\
substituted in numerator \\
$\sin 2 x=2 \sin x \cos x$ substituted in denominator
$$
\begin{aligned}
& \frac{\sqrt{2} \cos x}{2 \sin ^{2} x \cos x} \\
& \mathrm{~F}[x]= \pm k \frac{\cos x}{\sin x}
\end{aligned}
$$

 \& 

M1 \\
M1 \\
A1 \\
M1*
\end{tabular} \& or alternative form of double angle formula plus Pythagoras leading to no term in $\sin ^{2} x$ in numerator \& may be awarded if not seen as part of fraction

$$
\begin{aligned}
& \text { NB } \int_{\frac{1}{6} \pi}^{\frac{1}{4} \pi} \frac{1}{\sqrt{2} \sin ^{2} x} \mathrm{~d} x \\
& \text { NB }-\frac{\cos x}{\sqrt{2} \sin x}
\end{aligned}
$$ \\

\hline
\end{tabular}

| Question | Answer/Indicative content | Marks | Part marks and guidance |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{F}\left[\frac{1}{4} \pi\right]-\mathrm{F}\left[\frac{1}{6} \pi\right]$ <br> $=\frac{1}{2}(\sqrt{6}-\sqrt{2})$ www $\mathbf{A G}$ | M1dep* <br> A1 | eg $\frac{-\cos \pi / 4}{\sqrt{2} \times \sin \pi / 4}-\frac{-\cos \pi / 6}{\sqrt{2} \times \sin \pi / 6}$ <br> Examiner's Comments <br> A surprisingly high proportion of candidates did not recognise that double angle formulae were needed here, and went round in circles trying to use integration by parts or achieve a logarithmic form. Some of those who did successfully use the correct identities to produce a multiple of the function in part (ii) didn't make the connection between the two parts and either ran out of steam or produced reams of incorrect work. <br>That said, there were many examples of excellent work: well-presented, succinct solutions with sufficient detail to meet the show that demand. | $\operatorname{eg} \frac{-1 / \sqrt{2}}{\sqrt{2} \times 1 / \sqrt{2}}-\frac{-\sqrt{3} / 2}{\sqrt{2} \times 1 / 2}$ <br> at least one correct intermediate step following substitution needed as well as statement of given result $e g-\frac{\sqrt{2}}{2}(1-\sqrt{3})$ |
|  | Total | 8 |  |  |






| Question | Answer/Indicative content | Marks | Part marks | guidance |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  through by <br> $x^{3}$ prior to <br> integration <br> can get M1 <br> for use of <br> limits, and <br> possibly <br> M1 if <br> subtraction <br> happens <br> before <br> multiplying <br> through <br> Examiner's Comments This fairly standard integration question was very well answered by many candidates. The integration was usually accurate, especially of the quadratic curve. Candidates were usually able to write the reciprocal curve in an appropriate form, but it was a relatively common error for the index to decrease rather than increase. Candidates were then able to use limits accurately to evaluate their definite integral. The most common approach was to find two separate areas, and then find the difference to get the shaded area. This method invariably resulted in the correct answer, whereas candidate who subtracted before integrating sometimes did so in the incorrect order. A minority of candidates decided to multiply through by $\mathrm{x}^{3}$ before integrating, whilst the actual integration may be easier they did not appreciate that they were no longer dealing with the |  |


| Question |  | Answer/Indicative content | Marks | Part marks and guidance |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  | original functions. |
|  |  |  |  |  |  |  |

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Question} \& Answer/Indicative content \& Marks \& \multicolumn{2}{|c|}{Part marks and guidance} \\
\hline 9 \& a

a \& \begin{tabular}{l}
(a) when $x=0, t=0$ and hence $y=0$ \\
(b) when $x=1, t=1$ and hence $y=0.5$

 \& 

E1(AO2. \\
4) \\
[1] \\
B1(AO1. \\

1) \\
[1]

 \& 

Justify ( 0, \\
0 ) \\
convincingl \\
$y$
\end{tabular}

| Obtain $y=$ |
| :--- |
| 0.5 | \& \\


\hline \& b \&  \& | M1(AO2. |
| :--- |
| 1) |
| A1(AO2. |
| 1) |
| M1 (AO2. |
| 1) A1(AO2. |
| 1) |
| B1(AO2. |
| 4) |
| [5] | \&  \&  \\

\hline
\end{tabular}

| Question | Answer/Indicative content | Marks | Part marks and guidance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C | DR <br> use $u=1+t$ giving $\mathrm{d} u=\mathrm{d} t$ $\begin{aligned} & \int \frac{2 t^{2}}{(1+t)^{3}} \mathrm{~d} t=\int \frac{2(u-1)^{2}}{u^{3}} \mathrm{~d} u \\ & =\int 2 u^{-1}-4 u^{-2}+2 u^{-3} \mathrm{~d} u \\ & =\left[2 \ln u+4 u^{-1}-u^{-2}\right]_{1}^{2} \\ & =(2 \ln 2+2-0.25)-(2 \ln 1+ \\ & 4-1) \\ & =2 \ln 2-\frac{5}{4} \end{aligned}$ | $\begin{gathered} \text { E1(AO1. } \\ \text { 1a) } \\ \text { M1(AO1. } \\ \text { 1a) } \\ \\ \text { A1(AO1. } \\ \text { 1) } \\ \\ \text { M1(AO1. } \\ \text { 1a) } \\ \text { M1(AO1. } \\ \text { 1a) } \\ \text { A1(AO1. } \\ \text { 1) } \\ \text { [6] } \end{gathered}$ | Must be stated explicitly <br> Attempt to change integrand to function of $u$ <br> Obtain correct integrand <br> Attempt integration <br> Attempt use of limits $u=1$, 2 <br> Obtain correct exact area | Any equivalent form <br> Allow any exact equiv |  |
|  | Total | 13 |  |  |  |





| Question |  | Answer/Indicative content | Marks | Part marks and guidance |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  | square. <br> Perhaps the neatest <br> method was <br> 1 <br> $4 \times \int\left(3-2 x^{2}-1\right) \mathrm{d} x+4$ <br> -1 |


|  | Question | Answer/Indicative content | Marks | Part marks and guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |



| Question |  | Answer/Indicative content | Marks | Part marks and guidance |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

