1.

The positive constant a is such that $\int_{a}^{2 a} \frac{2 x^{3}-5 x^{2}+4}{x^{2}} \mathrm{~d} x=0$
i. Show that $3 a^{3}-5 a^{2}+2=0$.
ii. Show that $a=1$ is a root of $3 a^{3}-5 a^{2}+2=0$, and hence find the other possible value of a, giving your answer in simplified surd form.
2. The cubic polynomial $f(x)$ is defined by $f(x)=x^{3}-19 x+30$.
i. Given that $x=2$ is a root of the equation $\mathrm{f}(x)=0$, express $\mathrm{f}(x)$ as the product of 3 linear factors.
ii. Use integration to find the exact value of $\int_{-5}^{3} \mathrm{f}(x) \mathrm{d} x$.
iii. Explain with the aid of a sketch why the answer to part (ii) does not give the area enclosed by the curve $y=\mathrm{f}(x)$ and the x-axis for $-5 \leqslant x \leqslant 3$.
3.
(a) Find $\int\left(x^{3}-x^{2}-2 x\right) \mathrm{d} x$.

In this question you must show detailed reasoning.
(b)

Find the area enclosed by the curve $y=x^{3}-x^{2}-2 x$ and the positive x-axis.
4. In this question you must show detailed reasoning.

The diagram shows part of the graph of $y=2 x^{\frac{1}{3}}-\frac{7}{x^{\frac{1}{3}}}$. The shaded region is enclosed by the curve, the x-axis and the lines $x=8$ and $x=a$, where $a>8$.

Given that the area of the shaded region is 45 square units, find the value of a.
5.

The diagram shows the curve $y=\sqrt{x}-3$. The shaded region is bounded by the curve and the two axes.

Find the exact area of the shaded region.

Mark scheme

Question		Answer/Indicative content	Marks	Part marks and guidance	
1	i	$\int\left(2 x-5+4 x^{2}\right) d x=x^{2}-5 x-4 x^{-1}$$\left(4 a^{2}-10 a-2 / a\right)-\left(a^{2}-5 a-4 / a\right)=0$	M1	Attempt to rewrite integrand in a suitable form	Attempt to divide all 3 terms by x^{2}, or attempt to multiply all 3 terms by x^{2} soi
			A1	Obtain $2 x-5+4 x^{2}$	Allow if third term is written in fractional form
	i	$\begin{aligned} & 3 a^{2}-5 a+2 / a=0 \\ & 3 a^{3}-5 a^{2}+2=0 \quad \text { AG } \end{aligned}$	M1	Attempt integration of their integrand	Their integrand must be written as a polynomial ie with all terms of the form $k x^{\prime}$, and no brackets At least two terms must increase in power by 1 Allow if the -5 disappears
	i		A1	Obtain $x^{2}-5 x-4 x^{-1}$	Allow unsimplified ($\left.\mathrm{eg}^{4} /-1 x^{-1}\right)$
					Must be $F(2 a)-F(a)$ ie subtraction with limits in the correct order Allow if no brackets ie $4 a^{2}-10 a-2 / a-a^{2}-5 a-$
	i		M1	Attempt use of limits	4/a
					Must be in integration attempt, but allow M1 for limits following MO for integration eg if fraction not dealt with before integrating
					Must be equated to 0 before multiplying through by a At least one extra line of working required between $\left(4 a^{2}-10 a-2 / a\right)-\left(a^{2}-5 a-4 / a\right)=0$ and the final answer
				Equate to 0 and rearrange to obtain $3 a^{3}-5 a^{2}+2$ $=0$	AG so look carefully at working
			A1		Examiner's Comments
					The quality of responses to this question varied considerably. Not knowing how to deal with the

					method that candidates of all abilities can employ successfully. More candidates are attempting to use algebraic long division, but errors tend to be more common as some candidates can be confused as to whether to add or subtract within the division. The lack of an x^{2} term also caused problems for some. It was clear within some solutions that an alternative method had been attempted when the initial one failed. When this is the case candidates should ensure that they delete any working that does not form part of their final solution.	
	(ii ${ }^{\text {ii }}$	ii ii ii ii	$\left[\frac{1}{4} x^{4}-\frac{19}{2} x^{2}+30 x\right]_{-5}^{3}$ $=24.75-(-231.25)$ $=256$	M1* A1 M1d* A1	Attempt integration Obtain correct integral Attempt correct use of limits Obtain 256 Examiner's Comments The integration attempt was invariably correct, and most candidates were able to attempt the correct use of limits. However, evaluating an expression involving negative numbers once again caused problems for a significant minority of candidates and it was relatively common for $\mathrm{F}(-5)$ to be incorrect. As long as there was evidence of the	Increase in power by 1 for at least 2 terms Could also have $+c$ present; condone $\mathrm{d} x$ or \int still present Must be $F(3)-F(-5)$ Must be attempting the value of the requested definite integral, so M0 if instead attempting area (ie using $x=2$ as a limit) A0 for $256+c$ Answer only is $0 / 4$ - need to see evidence of integration, but use of limits does not need to be explicit

					Examiner's Comments For the first mark cand provide a sketch of the to do so, though there care in the sketches. F candidates had to dem that an area under the negative result when fo Expressing this idea c the capabilities of man the answers could ide below the x-axis that to explain what the iss solutions stated that th in the integration, and show that 'the area un infinite for this region. 'areas cancelling out', precision, and others integration should be this method had failed and detailed explanatio disappointing that so m unable to express thei required.
			Total	10	
3		a	$\begin{array}{r} \frac{x^{4}}{4}-\frac{x^{3}}{3}-x^{2} \\ \frac{x^{4}}{4}-\frac{x^{3}}{3}-x^{2}+c \end{array}$	M1(AO1.1) A1(AO1.1) A1(AO1.2) [3]	Increase at least two indices by 1 At least 2 terms correct

			Total	4	

